Категории
Самые читаемые
RUSBOOK.SU » Научные и научно-популярные книги » Химия » Общая химия - Николай Глинка

Общая химия - Николай Глинка

Читать онлайн Общая химия - Николай Глинка

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 113 114 115 116 117 118 119 120 121 ... 180
Перейти на страницу:

Углеводороды с кратными связями называются непредельными или ненасыщенными. Этилен и ацетилен — первые представители двух гомологических рядов — этиленовых и ацетиленовых углеводородов.

- 443 -

Рис. 124. Схема образования σ-связей в молекуле этана.

Простая ковалентная связь C-C (или С:С), образованная перекрыванием двух sp3-гибридных электронных облаков по линии, соединяющей центры атомов (по оси связи), как, например, в этане (рис. 124), представляет собой σ-связь (см. § 42). Связи C-H также являются σ-связями — они образуются перекрыванием по оси связи sp3-гибридного облака атома С и шарового облака 1s-электрона атома Н.

Природа кратных углерод-углеродных связей несколько иная. Так, в молекуле этилена при образовании двойной ковалентной связи C=C (или C::C) в каждом из атомов углерода в гибридизации участвует одна s-орбиталь и только две р-орбнтали (sp2-гибридизация); одна из р-орбиталей каждого атома С не гибридизуется. В результате образуются три sp2-гибридных электронных облака, которые участвуют в образовании трех σ-связей. Всего в молекуле этилена пять σ-связей (четыре C-H и одна C-C); все они расположены в одной плоскости под углами около 120° друг к другу (рис. 125).

Таким образом, одна из электронных пар в связи C=C осуществляет σ-связь, а вторая — образуется р-электронами, не участвующими в гибридизации; их облака сохраняют форму объемной восьмерки ("гантели"), ориентированы перпендикулярно к плоскости, в которой расположены σ-связи, и перекрываются над и под этой плоскостью (рис. 126), образуя π-связь (см. § 42).

Рис. 125. Схема образования σ-связей в молекуле этилена.

- 444 -

Рис. 126. Схема образования π-связи в молекуле этилена.

Следовательно, двойная связь С = С представляет собой сочетание одной σ и одной π-связей.

Тройная связь ≡ (или ⁝⁝) является сочетанием одной σ-связи и двух π-связей. Например, при образовании молекулы ацетилена в каждом из атомов углерода в гибридизации участвует одна s-орбиталь и только одна р-орбиталь (sp-гибридизация); в результате образуются два sp-гибридных электронных облака, участвующих в образовании двух σ-связей. Облака двух р-электронов каждого атома С не гибридизуются, сохраняют свою конфигурацию и участвуют в образовании двух π-связей. Таким образом, в ацетилене всего три σ-связи (одна C-C и две C-H), направленные вдоль одной прямой, и две π-связи, ориентированные в двух взаимно перпендикулярных плоскостях (рис. 127).

Кратные (т. е. двойные и тройные) связи при реакциях легко превращаются в простые; тройная вначале переходит в двойную, а последняя — в простую. Это обусловлено их высокой реакционной способностью и имеет место при присоединении каких-либо атомов к паре атомов углерода, связанных кратной связью.

Переход кратных связей в простые объясняется тем, что обычно π-связи обладают меньшей прочностью и поэтому большей лабильностью по сравнению с p-связями. При образовании π-связей р-электронные облака с параллельными осями перекрываются в значительно меньшей степени, чем электронные облака, перекрывающиеся по оси связи (т. е. гибридные, s-электронные или ориентированные вдоль оси связи р-электронные облака).

Рис. 127. Схема образования π-связей в молекуле ацетилена.

- 445 -

Рис. 128. Модели молекулы этилена: а - шариковая; б — сегментовая.

Кратные связи прочнее простых. Так, энергия разрыва связи C≡C составляет 535 кДж/моль, связи C=C - 423 кДж/моль , а связи C-C только 264 кДж/моль.

Из сказанного следует, что в формулах две черточки из трех в связи C≡C и одна черточка из двух в связи C=C выражают связи менее прочные, чем простая связь C-C.

На рис. 128 и 129 представлены шариковые и сегментовые пространственные модели соединений с двойной (этилен) и с тройной (ацетилен) связями.

4. Теория строения объяснила многочисленные случаи изомерии органических соединений.

Цепи из атомов углерода могут быть неразветвленными или разветвленными:

Так, состав C5H12 имеют три предельных углеводорода (пентана) с различным строением цепей — один с неразветвленной цепью (нормального строения) и два с разветвленной (изостроения):

Состав C4H8 имеют три непредельных углеводорода (бутилена) - два нормального строения, но изомерные по положению двойной связи и один — изостроения:

Рис. 129. Модели молекулы ацетилена: а шариковая; б — сегментовая.

- 446 -

Этим непредельным соединениям изомерны два циклических углеводорода, также имеющие состав C4H8 и изомерные друг другу по величине цикла:

При одном и том же составе соединения могут различаться по строению вследствие различного положения в углеродной цепи и других, не углеродных, атомов, например:

Изомерия может быть обусловлена не только различным порядком соединения атомов. Известно несколько видов пространственной изомерии (стереоизометрии), заключающейся в том, что соответствующие изомеры (стереоизомеры) при одинаковом составе и порядке соединения атомов отличаются различным расположением атомов (или групп атомов) в пространстве.

Так, если в соединении имеется атом углерода, связанный с четырьмя разными атомами или группами атомов (асимметрический атом), то возможны две пространственно-изомерные формы такого соединения. На рис. 130 представлены две тетраэдрические модели молочной кислоты , в которых асимметрический атом углерода (он в формуле помечен звездочкой) находится в центре тетраэдра. Нетрудно заметить, что эти модели невозможно совместить в пространстве: они построены зеркально и отображают пространственную конфигурацию молекул двух различных веществ (в данном примере молочных кислот), отличающихся некоторыми физическими, а главным образом, биологическими свойствами. Такая изомерия называется зеркальной стереоизомерией, а соответствующие изомеры — зеркальными изомерами.

* Наличие такого атома приводит к асимметрии молекул; очевидно, что обе модели на рис. 130 несимметричны - ни через одну из них невозможно провести плоскость симметрии.

- 447 -

Рис. 130. Тетраэдрические модели молекул зеркальных изомеров молочной кислоты.

Различие в пространственном строении зеркальных изомеров может быть представлено и при помощи структурных формул, в которых показано различное расположение атомных групп при асимметрическом атоме; например, для приведенных на рис. 130 зеркальных изомеров молочной кислоты:

Как уже указано, атомы углерода; соединенные двойной связью, лежат в одной плоскости с четырьмя связями, соединяющими их с другими атомами; углы между направлениями этих связей приблизительно одинаковы (рис. 126). Когда с каждым из атомов углерода при двойной связи соединены различные атомы или группы, возможна так называемая геометрическая стереоизомерия, или цис-транс-изомерия. Примером могут служить пространственные геометрические изомеры дихлорэтилена CHCl≡CHCl:

В молекулах одного изомера атомы хлора расположены по одну сторону двойной связи, а в молекулах другого — по разные стороны. Первая конфигурация называется цис-, вторая — транс-конфигурацией. Геометрические изомеры отличаются друг от друга по физическим и химическим свойствам.

- 448 -

Существование их обусловлено тем, что двойная связь исключает возможность свободного вращения соединенных ею атомов вокруг оси связи (такое вращение требует разрыва π-связи; см. рис. 126).

5. Взаимное влияние в молекулах органических веществ проявляют прежде всего атомы, непосредственно связанные друг с другом. В этом случае оно определяется характером химической связи между ними, степенью различия в их относительной электроотрицательности и, следовательно, степенью полярности связи.

Например, если судить по суммарным формулам, то в молекуле метана (CH4) и в молекуле метилового спирта (CH4O) все четыре атома водорода должны обладать одинаковыми свойствами. Но, как будет показано дальше, в метиловом спирте один из атомов водорода способен замещаться щелочным металлом, тогда как в метане атомы водорода такой способности не проявляют. Это объясняется тем, что в спирте атом водорода непосредственно связан не с углеродом, а с кислородом

В приведенных структурных формулах стрелками на черточках связей условно показано смещение пар электронов, образующих ковалентную связь, вследствие различной электроотрицательности, атомов. В метане такое смещение в связи H→O невелико, поскольку электроотрицательность углерода (2,5) лишь незначительно превышает электроотрицательность водорода (2,1) табл. 6, стр. 118). При этом молекула метана симметрична. В молекуле же спирта связь O←H значительно поляризована, поскольку кислород (электроотрицательность 3,5) гораздо больше оттягивает на себя электронную пару; поэтому атом водорода, соединенный с атомом кислорода, приобретает большую подвижность, т. е. легче отрывается в виде протона.

1 ... 113 114 115 116 117 118 119 120 121 ... 180
Перейти на страницу:
На этой странице вы можете бесплатно скачать Общая химия - Николай Глинка торрент бесплатно.
Комментарии
Открыть боковую панель
Комментарии
Вася
Вася 24.11.2024 - 19:04
Прекрасное описание анального секса
Сергій
Сергій 25.01.2024 - 17:17
"Убийство миссис Спэнлоу" от Агаты Кристи – это великолепный детектив, который завораживает с первой страницы и держит в напряжении до последнего момента. Кристи, как всегда, мастерски строит