Категории
Самые читаемые
RUSBOOK.SU » Научные и научно-популярные книги » Физика » Физика в технике - Г. Покровский

Физика в технике - Г. Покровский

Читать онлайн Физика в технике - Г. Покровский

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 7 8 9 10 11 12 13 14 15 ... 17
Перейти на страницу:

При не очень высокой температуре, например при температуре 15–20 °C, максимальная доля энергии излучается в инфракрасной области, т. е. на волнах длиной в несколько десятых долей миллиметра. При повышении температуры вещества максимум его излучения перемещается в видимую, а затем и в ультрафиолетовую область спектра. Так, например, максимум излучения Солнца, температура поверхности которого равна примерно 5–6 тысяч градусов, приходится на длину волны [1], т. е. лежит в желто-зеленой области спектра видимого света.

Смещение максимума излучаемой энергии в сторону более коротких длин волн с увеличением температуры тела носит название закона смещения Вина. С помощью закона Вина можно рассчитать, в какой части спектра излучается основная доля энергии разогретого тела, температура которого известна, и наоборот, зная распределение излучаемой телом энергии по спектру, можно определить его температуру.

Если свет, излучаемый нагретым телом или газом, пропустить через стеклянную или кварцевую призму (рис. 18), то можно наблюдать спектр этого света, т. е. распределение лучистой энергии, испускаемой телом, по длинам волн.

Рис. 18. Схема спектрографа

Твердые тела, например металлы, испускают непрерывный спектр, а разогретые газы — линейчатый, т. е. спектр, состоящий из отдельных линий. Если металл перевести в парообразное состояние, его пары также будут испускать линейчатый спектр (рис. 19). Каждому элементу периодической системы Д. И. Менделеева соответствует вполне определенный, собственный спектр. Так, в спектре паров ртути, возбуждаемых электрическим током (ртутная лампа), в видимой области наиболее характерны желтая, зеленая и голубая линии, в спектре натрия — двойная желтая линия (дублет), соответствующая длинам волн 5590 и 5596Å.

В спектре водорода наиболее характерной является красная линия, длина волны которой равна 6563Å.

В настоящее время спектры почти всех элементов периодической системы изучены достаточно хорошо, и составлены атласы спектральных линий, где указаны длины волн той или иной линии в спектре и ее принадлежность к тому или иному элементу.

Таким образом, сфотографировав с помощью спектрографа спектр какого-либо вещества, введенного в электрическую дугу постоянного или переменного тока, по атласу можно определить, какие элементы содержатся в исследуемом веществе. Однако можно не только качественно определить присутствие той или иной примеси в данном веществе, но и количественно ее измерить. При этом спектральный анализ позволяет обнаруживать и измерять ничтожно малое количество примесей (до миллионной доли процента).

Рис. 19. Спектры белого света и паров некоторых веществ

Спектральный анализ имеет очень большое значение во многих отраслях науки и техники. С его помощью, на сталелитейных заводах определяют качество выплавленных сталей, содержание в них углерода, никеля, кремния, марганца и др. Спектральный анализ позволяет определять химический состав звезд и скорости их движения относительно Земли, измерять температуру светящихся объектов, определять структуру атомов, строение электронных оболочек и даже исследовать магнитные свойства атомных ядер.

До сих пор говорилось об объектах, которые сами испускают свет. Однако в ряде случаев оказывается невозможным разогреть то или иное вещество до высокой температуры без изменения его свойств. Невозможно разогреть, например, воду или какое-либо органическое соединение до температуры, при которой эти вещества стали бы излучать свет, так как при гораздо более низкой температуре эти вещества распадутся или перейдут в другое агрегатное состояние.

Каким же образом исследовать структуру таких веществ?

На помощь приходит молекулярный спектральный анализ, основанный на том, что при прохождении света, спектр которого является непрерывным, через прозрачное вещество в спектре наблюдаются полосы поглощения.

Изучая эти полосы, можно изучить характер молекулярных связей в веществе и структуру самих молекул. Некоторые вещества (например, вода), являясь прозрачными для видимого света, дают ряд полос в инфракрасной области спектра, обусловленных структурой самих молекул воды.

С помощью молекулярного спектрального анализа изучено чрезвычайно большое количество различных видов веществ и химических соединений, в том числе таких, как нефть и ее производные, различные виды белков и др.

Однако область физической оптики далеко не исчерпывается применением спектрального анализа. Так, с помощью интерференционных явлений молено осуществлять контроль при изготовлении очень точных деталей и механизмов, контролировать качество различных поверхностей с точностью до одной стотысячной доли миллиметра, изготовлять светофильтры, обладающие очень узкой спектральной полосой пропускания.

Такие светофильтры были с успехом использованы при фотографировании натриевого облака — искусственной кометы, созданной впервые советскими учеными при запуске космической ракеты в сторону Луны

Интерференционные явления легли в основу опытов Майкельсона, результаты которых послужили фундаментом для создания теории относительности.

Немалую роль в развитии физической оптики сыграли такие ученые, как Ньютон, большая часть работ которого посвящена исследованию различных оптических явлений, Р. Вуд, создавший новый тип диффракционной решетки — прибора для спектрального разложения света, Рэлей, Вавилов и другие.

Самостоятельным разделом физической оптики является изучение люминесцентных свойств жидких и твердых соединений (люминесценцией называют способность веществ светиться после облучения их видимым, ультрафиолетовым или инфракрасным светом).

На люминесценции основан люминесцентный анализ, с помощью которого можно производить весьма точные измерения количественного состава различных органических соединений, восстанавливать стершиеся надписи, анализировать состав красок и многое другое.

Здесь приведены лишь некоторые примеры, из которых видно, что в современной науке и технике физическая оптика занимает далеко не последнее место.

Ядерная физика и ядерная энергетика

После открытия Анри Беккерелем в 1896 году радиоактивности урана в физике появилось новое направление — ядерная физика, изучающая свойства и строение атомных ядер.

Представления об атомном ядре менялись по мере накопления количества наблюдений и экспериментов с «элементарными» частицами.

Пьер и Мария Кюри, Э. Резерфорд и другие ученые открыли три типа радиоактивных ядерных излучений: излучение α-частиц (ядер атомов гелия); β-излучение, т. е. излучение потока электронов атомными ядрами; γ-лучи — электромагнитное излучение, подобное свету, но с очень короткой длиной волны.

Каждое из этих излучений возникает при распаде атомных ядер и является, таким образом, одним из источников нашего познания о строении и свойствах ядер.

В 1932 году советский физик Д. Д. Иваненко высказал гипотезу, согласно которой атомные ядра рассматривались как состоящие из положительно заряженных частиц — протонов и нейтральных частиц — нейтронов, открытых незадолго перед этим англичанином Дж. Чедвиком при облучении элемента бериллия α-частицами.

В дальнейшем с развитием квантовой механики и экспериментальной ядерной техники появилась теория различных ядерных процессов, а также выявлен характер и особенности ядерных сил, действующих между протонами и нейтронами, находящимися на весьма близких расстояниях. Немалая заслуга в этом принадлежит советским физикам И. М. Франку, Л. В. Грошеву, А. И. Алиханову, Д. Д. Иваненко и др., труды которых наряду с работами Гейзенберга, Бора и Ферми послужили основой, на которой была построена современная теоретическая ядерная физика.

Что же представляют собой атомные ядра и каким образом происходит выделение внутриядерной энергии?

Как известно, атомные ядра состоят из протонов и нейтронов, устойчиво соединяющихся в определенных соотношениях друг с другом. Самое легкое атомное ядро — ядро атома водорода — состоит из одного протона, ядро тяжелого водорода (дейтерия) — из протона и нейтрона (рис. 20).

Рис. 20. Схемы атомных ядер

Чтобы сложное ядро существовало устойчиво, число нейтронов и протонов должно быть одинаковым у более простых ядер, но у тяжелых ядер число нейтронов должно превышать число протонов в определенном соотношении.

Протоны несут на себе положительные электрические заряды и поэтому отталкиваются друг от друга. Нейтроны нейтральны, и на них не действуют никакие силы (кроме силы тяжести). Все это справедливо только до тех пор, пока протоны и нейтроны находятся друг от друга на расстоянии, значительно превышающем их собственный диаметр. Если же эти частицы подходят очень близко друг к другу, возникают силы притяжения, во много раз превышающие электрическое отталкивание протонов и сжимающие протоны и нейтроны в очень плотное, и очень небольшое по своим размерам атомное ядро.

1 ... 7 8 9 10 11 12 13 14 15 ... 17
Перейти на страницу:
На этой странице вы можете бесплатно скачать Физика в технике - Г. Покровский торрент бесплатно.
Комментарии
Открыть боковую панель
Комментарии
Вася
Вася 24.11.2024 - 19:04
Прекрасное описание анального секса
Сергій
Сергій 25.01.2024 - 17:17
"Убийство миссис Спэнлоу" от Агаты Кристи – это великолепный детектив, который завораживает с первой страницы и держит в напряжении до последнего момента. Кристи, как всегда, мастерски строит