Юный техник, 2004 № 08 - Журнал «Юный техник»
Шрифт:
Интервал:
Закладка:
Мощность… 150 л.с.
Максимальная скорость… 170 км/ч
Снаряженный вес… 1410 кг
Вместимость топливного бака… 57 л
Разгон до 100 км/ч… 8,3 с
Расход топлива в городе… 14 л/100 км
У этого авианосца нелегкая судьба. В строй его ввели в июне 1917 года, когда боевая авиация находилась на самой ранней стадии развития. Тем не менее, на палубе была установлена наклонная 50-метровая платформа для взлета и посадки. Под ней находился ангар для четырех гидроаэропланов и шести сухопутных машин, которые на палубу подавал специальный лифт.
В марте 1918 года после переоборудования в строй флота вернулся совсем другой «Furious» — со 100-метровой посадочной палубой шириной около 30 метров.
В 1939 году на правом борту «Furious» возвели небольшую надстройку с мачтой, на которой установили дальномеры, электронное оборудование и малокалиберные зенитные автоматы.
В 1942 году, после ремонта в США, «Furious» в течение двух лет сопровождал конвои, прикрывал высадку союзников в Сицилии и участвовал в эпизодических набегах на побережье FlopBernn.
Техническая характеристика:
Длина… 240 м
Ширина… 24,69 м
Водоизмещение 22 000 т
Осадка… 8,31 м
Экипаж… 1132 чел.
Скорость… 30 узлов
Вооружение:
140-мм орудий… 10
Зенитных установок… 3
Самолетов… 26
ФИЗИЧЕСКИЙ ЭКСПЕРИМЕНТ
Как увидеть то, что только слышно
Колеблющийся предмет колеблет и молекулы воздуха окружающей среды, и по ней бегут, периодически повторяясь, зоны изменения плотности (рис. 1). Это и есть звуковые волны.
При обычных амплитудах — от шепота до грома оркестра — зависимость плотности воздуха от времени синусоидальна. Но при очень больших, например, при взрывах, в среде распространяются волны другого типа — ударные. Наше ухо воспринимает их как оглушительный грохот.
Принято считать, что человеческое ухо воспринимает колебания с частотой от 20 до 20 000 Гц. Но эти границы индивидуальны. Тем не менее звуки с частотой выше 20 кГц называются ультразвуками. Некоторые животные, например собаки и кошки, слышат ультразвуки вплоть до 40 кГц. Частотный диапазон речи примерно от 200 до 3500 Гц. Нижняя граница частотного диапазона певцов и певиц 80 Гц, верхняя — 2300 Гц.
Частотный диапазон музыкальных инструментов гораздо шире. Например, у органа он лежит в пределах от 20 до 16 000 Гц. Как показывают приборы, многие музыкальные инструменты помимо звуков создают также и ультразвуки.
Но вот что удивительно. Звуки с частотой 25–40 кГц не услышит человек с самым тонким музыкальным слухом. Однако при демонстрации записи музыки, у которой искусственно срезаны частоты выше 20 кГц, он явственно ощущает неестественность ее звучания. Именно потому в мире производят акустическую аппаратуру запредельного качества, сравнимую по цене с хорошим автомобилем. В ней применяют радиолампы, трансформаторы, намотанные серебряной проволокой, а корпуса наушников изготавливают из сакуры — японской вишни.
Но вернемся к теме статьи. Можно ли увидеть звук?
Вот простой способ. Обрежьте воздушный шарик и натяните на кастрюлю (рис. 2).
Получится упругая мембрана. Далее сделайте «барабанные палочки», надев на стержни от авторучек, допустим, кусочки ластика.
Насыпьте на мембрану мелкий песок, соль или манную крупу и ударьте палочкой по кастрюле. Песок на пленке начнет подпрыгивать и скатываться к краям. В этом опыте возникшие колебания успевают заявить о своем существовании тем, что сбрасывают песок к краям мембраны.
Казалось бы, факт ничем не примечательный. Однако в цехах заводов можно увидеть любопытную картину. По наклонному желобу ползут мелкие детали… снизу вверх. Приглядевшись, вы увидите, что желоб колеблется. Тот же эффект, который отбрасывает песок к краям кастрюли, заставляет подниматься детали по желобу.
Совсем иную картину нам покажет звук камертона на поверхности воды в малом сосуде, например, миске.
Налейте в миску воды и коснитесь ее поверхности ножкой звучащего камертона. На поверхности воды появится рябь. Ее гребни и впадины находятся в движении, колеблются то вверх, то вниз. Но есть и места, где уровень воды не меняется. Картина волн в целом стоит на месте. Такие волны называют стоячими. Они образуются от сложения волн, посылаемых ножкой камертона, с волнами, отразившимися от стенок миски.
Картину стоячих волн можно наблюдать и в хрустальном бокале, наполненном водой. Проведите по его краю мокрым пальцем, так чтоб он начал «петь». При определенной силе звука на поверхности воды возникнут стоячие волны, движущиеся от стенок, создавая в центре маленький бугорок.
Тот же опыт можно проделать даже с массивной кастрюлей из нержавеющей стали. Звук получится тоном ниже, а бугорок в центре временами будет напоминать фонтанчик.
Этим воспользовались древние китайцы, создав «магический таз». Отлитый из бронзы, он имел две ручки. Если их умело потереть, то в центре таза начинал бить фонтан высотою до трех метров. Сегодня подобные «магические тазы» шарлатаны применяют для предсказания судеб, хотя фонтанчик в центре таза — это обычное физическое явление, основанное на резонансе и интерференции волн.
В металлах звуковые волны распространяются со скоростью 3–5 км/с, их удается запечатлеть методом скоростной киносъемки, но для этого нужна дорогая и сложная аппаратура. Однако, распространяясь в твердых телах, они отражаются от их границ и, взаимодействуя друг с другом, образуют систему стоячих волн, которые тоже можно наблюдать.
Впервые это сделал немецкий физик Хладни в начале XIX века. Для этого он собрал прибор, представляющий собой бронзовую прямоугольную пластину, прикрепленную в центре при помощи винта к деревянной стойке (рис. 3).
Прибор служил украшением аристократических салонов и физических кабинетов. Пластину посыпали мелким песком, а затем, придерживая рукой, проводили по ее краю смычком скрипки.
Пластина начинала дрожать, издавая протяжный звук, и песчинки на ее поверхности выстраивались в замысловатые фигуры. По своей сути это картина стоячих звуковых волн, возникающих в твердом теле. Песок, находящийся в пучностях стоячей волны (максимальная амплитуда колебаний), скатывается и скапливается в узлах, где амплитуда колебаний минимальна. Картина колебаний становится видимой.
Прибор Хладни давно уже не выпускается. Но в одном из кружков его сделали из круглой стеклянной пластины от электроскопа. Если провести по ее краю точильным бруском, получается песочный крест с четкими границами.
Вообще для изготовления прибора Хладни нужна гладкая плоская пластина толщиною около 3 мм из металла, в котором долго не затухают звуки, например, стали или бронзы.
В воздухе заметить звуковые волны тоже непросто, поскольку он прозрачен. Но в местах сгущения и разрежения волн его оптические свойства чуть-чуть меняются. Глаз этого не замечает, но есть довольно сложные приборы, дающие изображение волн на экране.
Уже известный вам немецкий физик-экспериментатор Вихардт Поль нашел очень простой и изящный способ, позволяющий увидеть стоячие звуковые волны, распространяющиеся в комнате. Чтобы их создать, достаточно подключить громкоговоритель к школьному звуковому генератору. В зависимости от выбранной частоты колебаний длина волн может меняться от метров до сантиметров. Длинные волны неудобно наблюдать, очень короткие — плохо воспроизводит громкоговоритель. Лучше всего подать на него частоту 5 — 10 кГц.
Наблюдать волны можно на поверхности воды в ванночке с прозрачным дном. Осветив ее снизу лампочкой карманного фонаря, вы получите на потолке яркий рисунок стоячих звуковых волн. Его четкость повысится, если вы добавите в воду немного жидкости для мытья посуды. Она снижает поверхностное натяжение воды и заметно усиливает впадины и выступы на ее поверхности.
Картина стоячих звуковых волн в комнате довольно замысловата и меняется в окрестностях каждого предмета. На рисунке 4, взятом из книги В.Поля, вы видите «звуковой отпечаток» руки, поднесенной к волновой ванне. В. Поль полагал, что примерно так «видят» мир своими ушами летучие мыши, которым звук заменяет свет.
Г.ТУРКИНА, А.ИЛЬИН
Рисунки А.ИЛЬИНА
Рис. 4
ПОЛИГОН
Насос и солнце
Поливать сад или огород, таская воду ведрами из ближайшего водоема, — работа нелегкая. Но ее можно избежать, сделав насос, настолько простой по конструкции, что практически все его детали можно найти, как говорится, в хозяйстве. А чтобы лучше разобраться в его работе, предлагаем поставить простой эксперимент.