Категории
Самые читаемые
RUSBOOK.SU » Компьютеры и Интернет » Программное обеспечение » Архитектура операционной системы UNIX - Морис Бах

Архитектура операционной системы UNIX - Морис Бах

Читать онлайн Архитектура операционной системы UNIX - Морис Бах

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 105 106 107 108 109 110 111 112 113 ... 127
Перейти на страницу:

На Рисунке 11.21 показан пример процесса-клиента, ведущего общение с сервером. Клиент создает гнездо в том же домене, что и сервер, и посылает запрос на подключение к гнезду с именем sockname. В результате подключения процесс-клиент получает виртуальный канал связи с сервером. В рассматриваемом примере клиент передает одно сообщение и завершается.

Если сервер обслуживает процессы в сети, указание о том, что гнездо принадлежит домену "Internet", можно сделать следующим образом:

socket(AF_INET, SOCK_STREAM, 0);

и связаться с сетевым адресом, полученным от сервера. В системе BSD имеются библиотечные функции, выполняющие эти действия. Второй параметр вызываемой клиентом функции connect содержит адресную информацию, необходимую для идентификации машины в сети (или адреса маршрутов посылки сообщений через промежуточные машины), а также дополнительную информацию, идентифицирующую приемное гнездо машины-адресата. Если серверу нужно одновременно следить за состоянием сети и выполнением локальных процессов, он использует два гнезда и с помощью функции select определяет, с каким клиентом устанавливается связь в данный момент.

11.5 ВЫВОДЫ

Мы рассмотрели несколько форм взаимодействия процессов. Первой формой, положившей начало обсуждению, явилась трассировка процессов — взаимодействие двух процессов, выступающее в качестве полезного средства отладки программ. При всех своих преимуществах трассировка процессов с помощью функции ptrace все же достаточно дорогостоящее и примитивное мероприятие, поскольку за один сеанс функция способна передать строго ограниченный объем данных, требуется большое количество переключений контекста, взаимодействие ограничивается только формой отношений родитель-потомок, и наконец, сама трассировка производится только по обоюдному согласию участвующих в ней процессов. В версии V системы UNIX имеется пакет взаимодействия процессов (IPC), включающий в себя механизмы обмена сообщениями, работы с семафорами и разделения памяти. К сожалению, все эти механизмы имеют узкоспециальное назначение, не имеют хорошей стыковки с другими элементами операционной системы и не действуют в сети. Тем не менее, они используются во многих приложениях и по сравнению с другими схемами отличаются более высокой эффективностью.

Система UNIX поддерживает широкий спектр вычислительных сетей. Традиционные методы согласования протоколов в сильной степени полагаются на помощь системной функции ioctl, однако в разных типах сетей они реализуются по-разному. В системе BSD имеются системные функции для работы с гнездами, поддерживающие более универсальную структуру сетевого взаимодействия. В будущем в версию V предполагается включить описанный в главе 10 потоковый механизм, повышающий согласованность работы в сети.

11.6 УПРАЖНЕНИЯ

1. Что произойдет в том случае, если в программе debug будет отсутствовать вызов функции wait (Рисунок 11.3)? (Намек: возможны два исхода.)

2. С помощью функции ptrace отладчик считывает данные из пространства трассируемого процесса по одному слову за одну операцию. Какие изменения следует произвести в ядре операционной системы для того, чтобы увеличить количество считываемых слов? Какие изменения при этом необходимо сделать в самой функции ptrace?

3. Расширьте область действия функции ptrace так, чтобы в качестве параметра pid можно было указывать идентификатор процесса, не являющегося потомком текущего процесса. Подумайте над вопросами, связанными с защитой информации: При каких обстоятельствах процессу может быть позволено читать данные из адресного пространства другого, произвольного процесса? При каких обстоятельствах разрешается вести запись в адресное пространство другого процесса?

4. Организуйте из функций работы с сообщениями библиотеку пользовательского уровня с использованием обычных файлов, поименованных каналов и элементов блокировки. Создавая очередь сообщений, откройте управляющий файл для записи в него информации о состоянии очереди; защитите файл с помощью средств захвата файлов и других удобных для вас механизмов. Посылая сообщение данного типа, создавайте поименованный канал для всех сообщений этого типа, если такого канала еще не было, и передавайте сообщение через него (с подсчетом переданных байт). Управляющий файл должен соотносить тип сообщения с именем поименованного канала. При чтении сообщений управляющий файл направляет процесс к соответствующему поименованному каналу. Сравните эту схему с механизмом, описанным в настоящей главе, по эффективности, сложности реализации и функциональным возможностям.

5. Какие действия пытается выполнить программа, представленная на Рисунке 11.22?

*6. Напишите программу, которая подключала бы область разделяемой памяти слишком близко к вершине стека задачи и позволяла бы стеку при увеличении пересекать границу разделяемой области. В какой момент произойдет фатальная ошибка памяти?

7. Используйте в программе, представленной на Рисунке 11.14, флаг IPC_NOWAIT, реализуя условный тип семафора. Продемонстрируйте, как за счет этого можно избежать возникновения взаимных блокировок.

8. Покажите, как операции над семафорами типа P и V реализуются при работе с поименованными каналами. Как бы вы реализовали операцию P условного типа?

9. Составьте программы захвата ресурсов, использующие (а) поименованные каналы, (б) системные функции creat и unlink, (в) функции обмена сообщениями. Проведите сравнительный анализ их эффективности.

10. На практических примерах работы с поименованными каналами сравните эффективность использования функций обмена сообщениями, с одной стороны, с функциями read и write, с другой.

11. Сравните на конкретных программах скорость передачи данных при работе с разделяемой памятью и при использовании механизма обмена сообщениями. Программы, использующие разделяемую память, для синхронизации завершения операций чтения-записи должны опираться на семафоры.

#include ‹sys/types.h›

#include ‹sys/ipc.h›

#include ‹sys/msg.h›

#define ALLTYPES 0

main() {

 struct msgform {

  long mtype;

  char mtext[1024];

 } msg;

 register unsigned int id;

 for (id = 0; ; id++) while (msgrcv(id, &msg, 1024, ALLTYPES, IPC_NOWAIT) › 0);

}

Рисунок 11.22

ГЛАВА 12. МНОГОПРОЦЕССОРНЫЕ СИСТЕМЫ

В классической постановке для системы UNIX предполагается использование однопроцессорной архитектуры, состоящей из одного ЦП, памяти и периферийных устройств. Многопроцессорная архитектура, напротив, включает в себя два и более ЦП, совместно использующих общую память и периферийные устройства (Рисунок 12.1), располагая большими возможностями в увеличении производительности системы, связанными с одновременным исполнением процессов на разных ЦП. Каждый ЦП функционирует независимо от других, но все они работают с одним и тем же ядром операционной системы. Поведение процессов в такой системе ничем не отличается от поведения в однопроцессорной системе — с сохранением семантики обращения к каждой системной функции — но при этом они могут открыто перемещаться с одного процессора на другой. Хотя, к сожалению, это не приводит к снижению затрат процессорного времени, связанного с выполнением процесса. Отдельные многопроцессорные системы называются системами с присоединенными процессорами, поскольку в них периферийные устройства доступны не для всех процессоров. За исключением особо оговоренных случаев, в настоящей главе не проводится никаких различий между системами с присоединенными процессорами и остальными классами многопроцессорных систем.

Параллельная работа нескольких процессоров в режиме ядра по выполнению различных процессов создает ряд проблем, связанных с сохранением целостности данных и решаемых благодаря использованию соответствующих механизмов защиты. Ниже будет показано, почему классический вариант системы UNIX не может быть принят в многопроцессорных системах без внесения необходимых изменений, а также будут рассмотрены два варианта, предназначенные для работы в указанной среде.

Рисунок 12.1. Многопроцессорная конфигурация

12.1 ПРОБЛЕМЫ, СВЯЗАННЫЕ С МНОГОПРОЦЕССОРНЫМИ СИСТЕМАМИ

В главе 2 мы говорили о том, что защита целостности структур данных ядра системы UNIX обеспечивается двумя способами: ядро не может выгрузить один процесс и переключиться на контекст другого, если работа производится в режиме ядра, кроме того, если при выполнении критического участка программы обработчик возникающих прерываний может повредить структуры данных ядра, все возникающие прерывания тщательно маскируются. В многопроцессорной системе, однако, если два и более процессов выполняются одновременно в режиме ядра на разных процессорах, нарушение целостности ядра может произойти даже несмотря на принятие защитных мер, с другой стороны, в однопроцессорной системе вполне достаточных.

1 ... 105 106 107 108 109 110 111 112 113 ... 127
Перейти на страницу:
На этой странице вы можете бесплатно скачать Архитектура операционной системы UNIX - Морис Бах торрент бесплатно.
Комментарии
Открыть боковую панель
Комментарии
Сергій
Сергій 25.01.2024 - 17:17
"Убийство миссис Спэнлоу" от Агаты Кристи – это великолепный детектив, который завораживает с первой страницы и держит в напряжении до последнего момента. Кристи, как всегда, мастерски строит