Категории
Самые читаемые
RUSBOOK.SU » Научные и научно-популярные книги » Психология » Психология критического мышления - Дайана Халперн

Психология критического мышления - Дайана Халперн

Читать онлайн Психология критического мышления - Дайана Халперн

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 97 98 99 100 101 102 103 104 105 ... 149
Перейти на страницу:

Главная трудность при интерпретации маловероятных рисков, таких как наводнения или ядерные аварии, состоит в том, что статистические данные о них трудны для осмысления. Трудно соотнести с собственной жизнью тот факт, что конкретное связанное с риском событие случается с одним из 10 000 человек. Нам необходимо так переформулировать эту информацию, чтобы она отвечала на вопрос: «Насколько вероятно, что это случится со мной?» Один из предлагаемых способов осмысления такого рода информации состоит в том, чтобы перевести все подобные риски в стандартные единицы «риска в час» (Slovic, Fischoff, Lichtenstein, 1986). Предположим, например, вы узнаете, что риск, связанный с поездкой на мотоцикле, равен риску, который связан с пребыванием в 75-летнем возрасте в течение одного часа. Поможет ли подобная информация осмысленно интерпретировать риск, связанный с поездкой на мотоцикле? Хотя она может принести пользу при оценке сравнительного риска (поездка на мотоцикле по сравнению с полетом на дельтаплане), сама по себе такая информация бесполезна, поскольку понять, что подразумевается под риском пребывания в 75-летнем возрасте в течение одного часа, все равно трудно.

В качестве избирателей и потребителей мы постоянно сталкиваемся с необходимостью принятия решений по огромному количеству самых разных проблем, включающих в себя использование ядерной энергии, радиационное заражение пищевых продуктов, хирургические операции, качество воды и воздуха, применение лекарств. Для принятия обоснованного решения всегда необходимо тщательное рассмотрение информации, касающейся оценки риска, связанного с данным решением (например, исторические данные, аналогичные риски и риски, связанные с отдельными компонентами), а также понимание факторов, приводящих к тенденциозности при субъективной оценке риска.

Ниже приводятся ответы на заданные выше вопросы о вероятностях причин смерти, сопровождающиеся действительными частотностями каждой причины (количество смертей на 100 000 000 человек). Проверьте свои ответы и выясните, не сделали ли вы общих ошибок, переоценив события, которые касаются большого количества людей одновременно и лучше запоминаются (такие, как авиакатастрофы), и недооценив те риски, которые мы считаем управляемыми (такие, как вождение автомобиля).

Использование статистики и возможные ошибки, возникающие при этом

Существует три вида лжи: просто ложь, гнусная ложь и статистика.

Дизраэли (1804–1881)

Когда мы хотим узнать что-нибудь о группе людей, часто бывает невозможно или неудобно спрашивать об этом всех членов группы. Предположим, что вы хотите выяснить, действительно ли доноры, сдающие кровь для Красного Креста, как правило, добрые и благородные люди. Поскольку вы не можете обследовать всех, кто сдает кровь, чтобы определить, насколько они добры и заботливы, вы обследуете только часть этого контингента, которая называется выборкой. Количественные показатели, рассчитанные на выборке людей, называется статистическими данными. (Статистикой также называется область математики, которая использует теорию вероятностей для принятия решений о контингентах.) Статистические данные встречаются в любой сфере жизни — от средних результатов игроков в бейсбол до величины военных потерь. Многие люди вполне справедливо относятся к статистике подозрительно. Хафф (Huff, 1954) написал небольшую книжечку, в которой приводятся юмористические примеры статистических ошибок. Книга носит название «Как лгать с помощью статистики» (How to Lie With Statistics). В этой книге есть такая зарифмованная мысль: «Статистика умело грим наложит — немного пудры и немного краски — и факты на себя уж не похожи. Я отношусь к статистике с опаской» (р. 9).

О среднем

Если сказать, что в средней американской семье 2,1 ребенка, то что это будет означать? Это число было получено путем создания выборки из американских семей, подсчета общего количества детей в этих семьях и деления на количество семей в выборке. Это число может дать весьма точное представление о том, что в американских семьях примерно по два ребенка — в некоторых больше, а в некоторых меньше, а может и ввести нас в заблуждение. Возможно, что в половине семей совсем не было детей, а в другой половине было по четыре ребенка или даже больше, а читатель будет ошибочно считать, что в большинстве семей «примерно» два ребенка, в то время как на самом деле нет ни одной такой семьи. Эта ситуация напоминает человека, который держит голову в духовке, а ноги в холодильнике и говорит, что в среднем он чувствует себя вполне комфортно. Не исключено также, что выборка, использованная для получения этого статистического показателя, не репрезентативна для контингента — в данном случае для всех американских семей. Если выборка состояла из студентов колледжей или жителей Манхэттена, то полученный результат завышен. С другой стороны, если в выборку вошли жители сельских районов, то полученный результат занижен. Если выборки не отражают особенности контингента, то их называют нерепрезентативными выборками. Статистические данные, рассчитанные на таких выборках, не дают точной информации о контингенте.

Средние значения тоже могут вводить нас в заблуждение, поскольку существует три различных вида средних значений. Предположим, что у миссис Вонг пятеро детей. Старшая дочь сделала успешную карьеру и занимает пост управляющего большой корпорацией. Она зарабатывает $500 000 в год. Вторая дочь — учительница и зарабатывает $25 000 в год. Третий сын работает официантом и получает $15 000 в год. Оставшиеся дети — безработные артисты, получающие по $5000 в год. Если миссис Вонг хочет похвастаться, как хорошо живут ее дети, она может подсчитать среднее арифметическое их доходов, которое называют еще средним значением. Когда люди думают о средних показателях, они, как правило, имеют в виду среднее арифметическое. Это сумма всех значений, поделенная на число слагаемых. Средний доход детей миссис Вонг равен $550 000: 5 = $110 000. Конечно, любой человек, услышав такую цифру, заключит, что у миссис Вонг очень успешные и состоятельные дети.

Средний доход детей миссис Вонг получился таким высоким из-за того, что в сумму входит одно очень большое слагаемое, в результате чего среднее значение возросло. Средние значения также называют оценками с тяготением к центру. Второй тип оценок с центральной тенденцией — это медиана, или срединное значение. На него не влияет наличие нескольких экстремальных значений величины. Чтобы найти медиану, значения выстраиваются в порядке возрастания или убывания. Значение, оказавшееся в середине ряда, и является медианой. Для примера с доходами детей миссис Вонг это будет выглядеть так:

$5000; $5000; $15 000, $25 000, $500 000

Средним значением, или медианой, будет третье значение, или $15 000. Таким образом, миссис Вонг могла бы также заявить, что ее дети зарабатывают в среднем по $15 000. (Когда число значений четное, медиана равна среднему арифметическому двух срединных значений.)

Миссис Вонг могла бы утверждать, что ее дети зарабатывают в среднем $ 110 000 или $15 000, и оба утверждения были бы правдивыми. Смысл приведенного примера в том, что следует осторожно относиться к средним показателям. Чтобы понять их смысл, необходимо знать, о каком типе значения идет речь — о среднем арифметическом или медиане, а также иметь представление об изменчивости данных и «форме» распределения (каким образом числа группируются).

Точность

Предположим, я сообщу вам, что проводилось научное исследование продолжительности рабочего дня у служащих. Более того, в результате этого исследования обнаружено, что средняя продолжительность рабочего дня равна 8,167 часа. Не правда ли, звучит наукообразно и внушительно? А если бы я сказала вам, что большинство служащих работает примерно по 8 часов в день? Большинство из вас ответило бы: «Я это и так знаю. Стоило ли проводить исследование?» Дело в том, что точные статистические данные часто производят на нас впечатление даже тогда, когда точность совсем не нужна.

Приведу пример из одного престижного еженедельного журнала новостей. Естественно, для журнала важно, чтобы читатели считали его статьи правдивыми и авторитетными. Несколько лет назад в нем была опубликована статья об угрозе здоровью жителей Нью-Йорка, которая возникает из-за собачьих экскрементов. Чтобы создать у читателей представление о масштабах проблемы, они подсчитали ежедневное количество собачьих экскрементов в Нью-Йорке с точностью до двух десятичных знаков (до одной сотой фунта!). Я понятия не имею, как они получили эту цифру, и мне даже думать не хочется о том, как они собирали данные. Я твердо уверена только в том, что они не могли точно измерить это количество. Зато, конечно, такие точные статистические данные произвели впечатление, что журнал публикует тщательно проверенную научную информацию, которой можно доверять.

1 ... 97 98 99 100 101 102 103 104 105 ... 149
Перейти на страницу:
На этой странице вы можете бесплатно скачать Психология критического мышления - Дайана Халперн торрент бесплатно.
Комментарии
Открыть боковую панель
Комментарии
Вася
Вася 24.11.2024 - 19:04
Прекрасное описание анального секса
Сергій
Сергій 25.01.2024 - 17:17
"Убийство миссис Спэнлоу" от Агаты Кристи – это великолепный детектив, который завораживает с первой страницы и держит в напряжении до последнего момента. Кристи, как всегда, мастерски строит