3a. Излучение. Волны. Кванты - Ричард Фейнман
Шрифт:
Интервал:
Закладка:
(34.24),
Мы уже знаем, что свет переносит с собой энергию. Теперь мы приходим к выводу, что свет несет также и импульс и, кроме того, импульс световой волны всегда равен энергии, деленной на с.
И наоборот, при испускании света источник испытывает отдачу. Если атом излучает энергию W в некотором направлении, возникает импульс отдачи р = W/c. Пучок света, падающий по нормали к зеркалу, при отражении сообщает зеркалу в два раза большую силу.
Все сказанное находится в рамках классической теории света. Мы, конечно, знаем, что существует квантовая теория и что свет во многих отношениях ведет себя как частица. Энергия света — частицы — равна частоте, умноженной на постоянную
(34.25)
Раз свет переносит импульс, равный энергии, деленной на с, то эффективные частицы, фотоны, несут импульс
(34.26)
Направление импульса совпадает, разумеется, с направлением распространения света. Следовательно, можно записать это в векторной форме
(34.27)
Мы знаем также, что энергия и импульс частицы образуют четырехвектор. Мы уже выяснили, что со и k тоже составляют четырехвектор. И очень хорошо, что в оба равенства (34.27) входит одна и та же константа; это означает, что квантовая теория и теория относительности согласуются друг с другом.
Уравнению (34.27) можно придать более элегантный вид: р =fik (релятивистское уравнение для частицы, которая сопоставляется волне). Хотя это соотношение написано нами для фотонов, у которых k (модуль k) равно со/с, а р = W/c, на самом деле оно имеет гораздо более общий характер. В квантовой механике все частицы, а не только фотоны проявляют волновые свойства, причем частота и волновое число соответствующих волн связаны с энергией и импульсом частицы соотношениями (34.27) (они называются соотношениями де-Бройля), даже в случае р, не равного W1с.
В предыдущей главе мы видели, что свет с- правой и левой круговой поляризацией также переносит момент количества движения, по величине пропорциональный энергии $ волны. С квантовой точки зрения пучок света с круговой поляризацией представляется в виде потока фотонов, каждый из которых несет момент количества движения i/t, направленный по или против движения. Вы видите, во что превращается поляризация с корпускулярной точки зрения — фотоны обладают моментом количества движения, как вращающиеся пули винтовки. Но картина с «пулями» столь же не полна, как и «волновая» картина, и нам предстоит обсудить эти представления более подробно в последующих главах, посвященных квантовым явлениям.
Глава 35
ЦВЕТОВОЕ ЗРЕНИЕ
§ 1. Человеческий глаз
§ 3, Цвет зависит от интенсивности
§ 3. Измерение восприятия цвета
§ 4:. Диаграмма цветности
§ 5. Механизм цветового зрения
§ 6. Физико-химические свойства цветового зрения
§ 1. Человеческий глаз
Явление цвета отчасти обусловлено физическими процессами. Мы уже говорили о цветовой гамме мыльных пленок, вызванной интерференцией. Но цвет, кроме того, связан еще с функцией глаза и с тем, что происходит позади него, т. е. с деятельностью мозга. Физика изучает поведение света, пока он находится вне человеческого глаза, а наши ощущения, после того как свет попал в глаз, возникают в результате фотохимических и нервных процессов, а также психологических рефлексов.
С восприятием света связано множество интересных явлений, в которых тесно переплетаются и физические, и физиологические процессы, так что познавание явлений природы, воспринимаемых через зрение, выходит за рамки физики как таковой. Мы не станем извиняться за то, что собираемся несколько вторгнуться в другие области науки, потому что, как мы уже подчеркивали, науки разделены не естественным путем, а лишь из соображений удобства. Природа вовсе не заинтересована в подобном разделении, и многие интересные явления лежат именно на стыке разных областей науки.
В гл. 3 мы в общих чертах говорили о связях физики с другими науками; теперь мы хотим более подробно исследовать ту область явлений, где физика и другие науки исключительно тесно связаны между собой. Эта область — восприятие света, зрение. Особое внимание мы уделим цветовому зрению. В этой главе мы в основном будем говорить о явлениях, связанных со зрением человека; следующая глава будет посвящена физиологическим аспектам зрения как у человека, так и у животных.
Фиг. 35.1. Строение глаза
Зрение начинается с глаза; чтобы понять, как мы видим, нужно разобраться в устройстве самого глаза. В следующей главе мы довольно подробно будем говорить о функции отдельных частей глаза и их связи с нервной системой. А пока кратко опишем, как функционирует глаз.
Свет попадает в глаз через роговицу (фиг. 35.1); мы уже рассказывали раньше, как свет преломляется и отображается на задней поверхности глаза, на слое, который называется сетчаткой; разные части сетчатки воспринимают лучи от различных областей поля зрения вне глаза. Сетчатка не вполне однородна: в ее центре есть участок — пятно, который мы используем, когда нам необходимо видеть предметы особенно четко; в этом участке острота зрения особенно велика, называется он — желтое пятно, или центральная ямка. Легко убедиться непосредственно на опыте, что боковые участки глаза различают детали рассматриваемого предмета не столь эффективно, как центральный участок. В сетчатке имеется еще один участок, где зрительные нервы, несущие всю информацию, собираются вместе и выходят из глаза; этот участок называется слепым пятном. Сетчатка там не имеет чувствительности, и если, например, закрыть левый глаз и посмотреть перед собой, а затем медленно отодвигать палец (или другой небольшой предмет) из поля зрения, то в каком-то месте поля зрения этот предмет неожиданно исчезнет. Известен пока лишь один случай, когда из этого эффекта была извлечена реальная польза. Один физиолог, показавший действие слепого пятна, стал любимцем при дворе французского короля; на утомительных заседаниях со своими придворными король развлекался, «отрубая им головы»: он смотрел на одного из них и следил, как в это время «исчезала» голова другого.
Фиг. 35.2, Структура сетчатки (свет входит снизу}
На фиг. 35.2 в увеличенном масштабе показана структура сетчатки. Различные части сетчатки имеют разную структуру. На периферических частях сетчатки наиболее часто встречаются удлиненные объекты, называемые палочками. Ближе к желтому пятну, кроме палочек, попадаются еще колбочки. Позже мы опишем структуру этих элементов. Чем ближе к желтому пятну, тем больше становится колбочек, а в самом желтом пятне фактически имеются одни только колбочки, лежащие столь тесно, что здесь они много мельче, или уже, чем в других местах сетчатки. Следовательно, в центре поля зрения мы видим с помощью колбочек, а на периферии в восприятии света участвуют палочки. Интересно, что любая чувствительная к свету клетка в сетчатке не связана со зрительным нервом непосредственно, а соединена с другими клетками, которые в свою очередь соединены между собой. Существует несколько типов клеток: одни несут информацию к зрительному нерву, а другие связаны между собой в основном в «горизонтальном» направлении. Всего имеется четыре типа клеток, но мы сейчас не будем об этом говорить подробно, а только подчеркнем основную идею: что световой сигнал уже на этом этапе «продумывается». Иначе говоря, информация, полученная от различных клеток, не сразу поступает в мозг от каждой точки в отдельности, а частично осмысливается в сетчатке путем комбинирования информации от нескольких зрительных рецепторов. Важно понять, что сам глаз выполняет часть функций осмысливания, свойственных головному мозгу.
§ 2. Цвет зависит от интенсивности
Одним из самых примечательных свойств зрения является способность глаза привыкать (адаптироваться) к темноте. Когда из ярко освещенной комнаты мы входим в темную, то некоторое время мы ничего не видим, и лишь постепенно окружающие предметы начинают вырисовываться все явственнее, и в конце концов мы начинаем замечать то, чего раньше совсем не видели. При очень слабом свете предметы кажутся лишенными окраски. Было установлено, что зрение в условиях темновой адаптации осуществляется почти исключительно с помощью палочек, а в условиях яркого света — с помощью колбочек. В результате мы распознаем целый ряд явлений, связанных с передачей функции зрения от палочек и колбочек, действующих совместно, к одним только палочкам.