Категории
Самые читаемые
RUSBOOK.SU » Домоводство, Дом и семья » Спорт » Физическая подготовка квалифицированных дзюдоистов к главному соревнованию года - Валерий Пашинцев

Физическая подготовка квалифицированных дзюдоистов к главному соревнованию года - Валерий Пашинцев

Читать онлайн Физическая подготовка квалифицированных дзюдоистов к главному соревнованию года - Валерий Пашинцев

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 2 3 4 5 6 7 8 9 10 11
Перейти на страницу:

Сокращение мышцы при постоянной нагрузке, сопровождающееся одним и тем же напряжением, называется изотоническим. Сокращение мышцы, когда она развивает силу, но не может укорачиваться из-за чрезмерной нагрузки, – изометрическим. Сократительная деятельность различных групп мышц очень разнообразна. Их согласованная деятельность обусловливает движение тела, а всякое движение вызывается сокращением большого количества мышц. Основная деятельность скелетных мышц связана с обеспечением технической подготовки спортсмена и осуществляет свою сократительную способность в связи с определенными приспособительными реакциями.

Отдельная скелетная мышца включает два основные типа волокон: медленно сокращающиеся (МС) и быстро сокращающиеся (БС). Чтобы достичь пика напряжения, при стимулировании медленно сокращающимся волокнам требуется 110 мс, а быстро сокращающимся – около 50 мс.

Быстро сокращающиеся волокна в свою очередь подразделяются на быстро сокращающиеся волокна типа «а» (БСа) и быстро сокращающиеся волокна типа «б» (БСб). Медленно сокращающиеся волокна окрашены в темный цвет. Быстро сокращающиеся волокна типа «а» не окрашены, а типа «б» имеют серую окраску. Вместе с тем считается, что волокна типа «а» редко используются при мышечной деятельности человека, а МС-волокна – чаще. Реже всего задействованы БС-волокна типа «б». В среднем мышцы состоят на 50 % из МС- и на 25 % из БС-волокон типа «а», остальные 25 % составляют главным образом БС-волокна типа «б».

Название МС- и БС-волокон обусловлено различиями в скорости их действия, осуществляемого разными формами миозин-АТФ-азы – фермента, расщепляющего АТФ для образования энергии, необходимой для выполнения сокращения или обеспечения расслабления. МС-волокна имеют медленную форму АТФ-азы, БС – быструю. В ответ на нервную стимуляцию АТФ быстрее расщепляется в БС, чем в МС-волокнах. Вследствие этого первые быстрее получают энергию для выполнения сокращения, чем вторые.

Для БС-волокон характерен более высокоразвитый саркоплазматический ретикулум (СР). Поэтому БС-волокна способны доставлять кальций в мышечные клетки при их активации. Считают, что именно эта способность обусловливает более высокую скорость действия БС-волокон.

Двигательная единица – это отдельный мотонейрон и мышечные волокна, которые он иннервирует. Таким образом, нейрон определяет, являются ли волокна медленно или быстро сокращающимися. Мотонейрон в МС двигательной единице имеет небольшое клеточное тело и иннервирует группу из 10-180 мышечных волокон. У мотонейрона в БС двигательной единице большое клеточное тело и больше аксонов, и он иннервирует от 300 до 800 мышечных волокон. Отсюда следует, что каждый МС-мотонейрон в состоянии активировать значительно меньшее количество мышечных волокон в противоположность БС-мотонейрону. При этом необходимо отметить, что сила, производимая отдельными МС- и БС-волокнами по величине отличается незначительно. МС- и БС-волокна имеют разные функции во время физической активности. МС-волокнам присущ высокий уровень аэробной выносливости, они эффективны в производстве АТФ на основе окисления углеводов и жиров и более приспособлены к выполнению длительной работы невысокой интенсивности. Быстро сокращающиеся мышечные волокна приспособлены к анаэробной деятельности (без кислорода), и при их работе АТФ образуется благодаря анаэробным реакциям. Б С двигательные единицы производят большую силу, однако легко устают ввиду ограниченной выносливости и используются главным образом при выполнении кратковременной работы высокой интенсивности.

В физиологии спорта в качестве основного критерия выносливости спортсмена используется величина максимального потребления кислорода (МПК) как интегральный показатель функциональных систем организма. Величина МПК характеризует мощность аэробного процесса и зависит в основном от двух факторов: функции кислородтранспортной системы и способности работающих скелетных мышц усваивать кислород. При тренировке на выносливость у бегунов и лыжников минутный объем крови резко возрастает, что увеличивает доставку мышцам кислорода и его потребление до 5,0–6,0 л/мин. Это и есть величина МПК. Для спортсменов циклических видов спорта, потенциальных призеров мировых первенств, МПК не должно быть меньше 80 мл/кг/мин. Такой высокий уровень потребления кислорода достигается при ЧСС около 200 уд./мин и при легочной вентиляции до 180–200 л/мин.

Характер интеграции звеньев сложного процесса обеспечения организма кислородом зависит, в известной мере, от структуры и интенсивности выполняемой работы, а также от индивидуальных особенностей механизма адаптации вегетативных систем организма к мышечной деятельности. Поэтому при изучении аэробной выносливости организма значительный интерес представляет динамика соотношений различных функций во время физической деятельности и в фазе восстановления. Выделяются три варианта реакции при выполнении нагрузки на велоэргометре. Первый вариант характеризуется адекватными реакциями со стороны дыхания и гемодинамических показателей. Второй вариант – компенсаторный, при котором одна из функций отражает реакцию напряжения системы регуляции. Третий вариант характеризуется выраженной дискоординацией исследуемых функций.

Восстановление показателей внешнего дыхания и кровообращения после стандартных физических нагрузок происходит неодновременно: определяется четкий гетерохронизм во времени.

Особенно существенное влияние на изменения величины интервалов отдыха оказывает период тренировки спортсмена. Сокращение интервалов между восстановлением показателей функции внешнего дыхания и кровообращения после физической нагрузки соответствует нарастанию тренированности спортсменов. При развитии явлений перетренированности, а также при форсированном возобновлении тренировок после заболеваний степень гетерохронизма возрастает за счет более позднего восстановления показателей внешнего дыхания.

Основными процессами, обеспечивающими клетку энергией, являются аэробный и анаэробный этап дыхания. С кровью кислород проникает в митохондрии клетки, где вступает в многоступенчатую реакцию с различными питательными веществами: белками, углеводами, жирами и др. Этот процесс называется клеточным дыханием. В результате выделяется химическая энергия, которую клетка запасает в АТФ. Это универсальный накопитель энергии, которую организм тратит на рост, движение, поддержание своей жизнедеятельности.

Энергетическими источниками для образования АТФ в скелетных мышцах являются креатинфосфатная кислота (КрФ), углеводы, жиры, белки.

Выделяют четыре механизма образования АТФ в тканях, каждый из которых имеет свои метаболические и биоэнергетические особенности. В энергообеспечении используются различные механизмы зависимости от интенсивности и длительности выполняемого упражнения. В скелетных мышцах выявлены три анаэробные и один аэробный пути образования АТФ.

Аэробный механизм образования АТФ включает реакции окислительного фосфорилирования, протекаемые в митохондриях.

Аэробный механизм ресинтеза АТФ в обычных условиях обеспечивает около 90 % общего количества АТФ, ресинтезируемой в организме. Ферментные системы аэробного обмена расположены в основном в митохондриях мышц. Механизм аэробного окисления питательных веществ носит название «окислительное фосфорилирование».

В качестве продуктов аэробного окисления используются глюкоза, высшие жирные кислоты, отдельные аминокислоты, кетоновые тела, молочная кислота и другие недоокисленные продукты метаболизма. Все эти вещества постепенно превращаются в единое вещество – ацетил-КоА, который окисляется в цикле лимонной кислоты до конечных продуктов диоксида углерода и воды с участием многочисленных окислительных ферментов и кислорода, доставляемого к тканям гемоглобином эритроцитов крови, а в скелетных мышцах – с участием кислорода, накапливаемого белком миоглобина. Скорость образования АТФ в процессе окислительного фосфорилирования зависит от следующих факторов:

• соотношения АТФ/АДФ (при отсутствии в клетке АДФ синтез АТФ не происходит);

• количества кислорода в клетке и эффективности его использования;

• активности многочисленных окислительных ферментов;

• количества систем дыхательных ферментов в митохондриях;

• целостности мембран митохондрий;

• количества митохондрий в клетке;

• концентрации гормонов, регуляторов процесса аэробного окисления веществ.

Снижение концентрации АТФ, наблюдаемое сразу после начала выполнения интенсивной физической нагрузки, активирует дыхательную и сердечно-сосудистую системы, доставляющие кислород к клеткам.

Количество кислорода, потребляемого легкими, прямо пропорционально количеству кислорода, используемому в процессах окислительного фосфорилирования. Это позволяет определять величину аэробного энергообразования по поступлению кислорода. Нормализация частоты дыхания и ЧСС происходит только после удовлетворения повышенных потребностей клеток в АТФ.

1 2 3 4 5 6 7 8 9 10 11
Перейти на страницу:
На этой странице вы можете бесплатно скачать Физическая подготовка квалифицированных дзюдоистов к главному соревнованию года - Валерий Пашинцев торрент бесплатно.
Комментарии
Открыть боковую панель
Комментарии
Вася
Вася 24.11.2024 - 19:04
Прекрасное описание анального секса
Сергій
Сергій 25.01.2024 - 17:17
"Убийство миссис Спэнлоу" от Агаты Кристи – это великолепный детектив, который завораживает с первой страницы и держит в напряжении до последнего момента. Кристи, как всегда, мастерски строит