Антенны - Е. Фурсова
- Категория: Научные и научно-популярные книги / Техническая литература
- Название: Антенны
- Автор: Е. Фурсова
Шрифт:
Интервал:
Закладка:
Антенны
Введение
Более 100 лет назад в одной из лабораторий Кронштадтской минной школы Александр Степанович Попов проводил свои эксперименты по увеличению радиуса действия первого радиоприемника. Все дальше и дальше относили приемник от передатчика, но звонок, который отмечал радиосигналы, исправно звонил. Наконец приемник был поставлен в самую дальнюю комнату, и звонок замолк. Приемник молчал несмотря на все попытки изобретателя «оживить» его. Но однажды, когда приемник был переставлен на другой стол, возле которого шла проволока из лаборатории, где был установлен передатчик, звонок вдруг зазвонил. Александр Степанович попробовал подключить к приемнику кусок провода, и он стал работать более устойчиво. Тогда приемник с подключенным к нему проводом был вынесен в сад, но там его действие не прекратилось. Так была создана антенна – один из самых важных компонентов всех систем коммуникаций, радиовещания и телевидения.
Появление антенн ознаменовало переход человечества в новую эру – эру теле– и радиокоммуникаций, мобильной связи и Интернета. С тех пор было создано очень много антенн разнообразных конструкций, в соответствии с их назначением. В настоящее время усовершенствование старых конструкций антенн и создание новых все еще продолжается, поскольку информационные потребности человечества возрастают и необходимость удовлетворять их не угасает.
Сегодня, несмотря на значительный прогресс в развитии антенн телевизионного вещания, проблема индивидуального приема телевизионных передач остается актуальной. Прежде всего, она интересует сельских жителей и людей, проживающих на территориях, расположенных в зонах неуверенного приема: на местности со сложным рельефом, в отдаленных районных центрах и приграничных населенных пунктах, когда есть желание смотреть передачи соседних стран.
В нашей книге представлен обзор основных видов антенн, применяемых для осуществления приема программ радиовещания и телевидения, описаны их наиболее важные параметры и эксплуатационные характеристики. Кроме этого в книге приведены некоторые схемы и рекомендации для самостоятельного конструирования антенн различных типов. Показано, что, несмотря на кажущуюся сложность конструкций антенн, их в большинстве случаев можно изготовить в домашних условиях. Надеемся, что приведенные в книге советы помогут людям, имеющим даже минимальные познания в радиотехнике, самостоятельно выбрать подходящую антенну, установить ее и добиться устойчивого приема той или иной телестанции, повысив тем самым качество уже принимаемых программ.
Что же такое антенна?
Антенна – устройство, которое излучает подведенную к нему высокочастотную энергию в виде электромагнитных волн в окружающее пространство (передающая антенна) или принимает высокочастотную энергию свободных колебаний (приемная антенна) и превращает ее в энергию электромагнитных колебаний, поступающую по фидеру на вход приемного устройства.
Фидер – это линия передачи (антенный кабель), предназначенная для транспортировки сигнала, принятого антенной к приемнику. Основная задача линии передачи (фидера) – осуществление транспортировки электромагнитной энергии, принятой антенной, к приемнику с минимальными потерями. От выбора фидерной линии зависит качество приема программ телевидения и радиовещания.
Передающая и приемная антенны обладают свойством взаимности, то есть одна и та же антенна может излучать или принимать электромагнитные волны, причем в обоих режимах она имеет одинаковые характеристики.
К передающим антеннам предъявляют дополнительные требования, связанные с большими подводимыми мощностями высокочастотной энергии, поэтому конструктивно приемные антенны проще передающих.
Свойства взаимности широко используются для определения характеристик антенн, так как некоторые параметры проще определять в режиме передачи, чем в режиме приема. Каждая антенна имеет целый ряд определенных характеристик, необходимых для оценки ее качества.
Основные параметры антенн
К основным параметрам приемных антенн относятся следующие:
РАБОЧИЙ ДИАПАЗОН ЧАСТОТ (полоса пропускания) – это интервал частот, в котором выдержаны все основные параметры приемной антенны: согласование, коэффициент усиления, коэффициент защитного действия и др. За полосу пропускания принимается спектр частот (определяется принимаемыми телевизионными каналами), на границах которого мощность принятого сигнала уменьшается не более чем в два раза.
ДИАГРАММА НАПРАВЛЕННОСТИ приемной антенны характеризует зависимость электродвижущей силы (ЭДС), наведенной в антенне электромагнитным полем, от ориентации ее в пространстве. Строится она в полярной (сферической) (рис. 1) или в прямоугольной (рис. 2.) системах координат в двух характерных плоскостях (горизонтальной и вертикальной).
Рис. 1
Рис. 2
При повороте антенны в ту или другую сторону от нулевого направления на диаграмме направленности откладываются относительные величины, получаемые путем нормировки текущего значения Е (амплитуды наведенной ЭДС) к ее максимальному значению Emax, то есть E/Emax. Если возвести в квадрат относительные значения ЭДС, соответствующие различным направлениям прихода сигнала, то можно построить диаграмму направленности по мощности.
Лепесток, соответствующий максимальному сигналу или нулевому направлению, называют основным или главным, остальные – боковыми или задними (в зависимости от расположения по отношению к главному лепестку) (рис. 1, 2).
Для удобства сравнения диаграмм направленности разных антенн их обычно нормируют, для чего максимальную величину ЭДС принимают за единицу.
Основным параметром диаграммы направленности является угол раствора (ширина) главного лепестка, в пределах которого ЭДС, наведенная в антенне электромагнитным полем, спадает до уровня 0,707, или мощность, спадающая до уровня 0,5 от максимальной. По ширине главного лепестка судят о направленных свойствах антенны. Чем эта ширина меньше, тем больше направленность антенны.
Форма диаграммы направленности зависит от типа и конструкции антенны. Так, например, диаграмма направленности полуволнового вибратора в горизонтальной плоскости напоминает восьмерку, а в вертикальной – круг. Антенна «волновой канал» в своей диаграмме направленности имеет ярко выраженный главный лепесток, а с увеличением числа директоров в антенне главный и боковые лепестки сужаются, при этом улучшаются направленные свойства антенны.
КОЭФФИЦИЕНТ НАПРАВЛЕННОГО ДЕЙСТВИЯ (КНД) характеризует направленные свойства антенн и представляет собой число, показывающее, во сколько раз мощность сигнала, принятая антенной, больше мощности, которую примет эталонная антенна (полуволновой вибратор). КНД (D) зависит от ширины диаграммы направленности антенны в горизонтальной и вертикальной плоскостях. Приближенная формула имеет вид:
D ≈ 41200⋅k2 /H⋅V, (1.1)
где: k – коэффициент, равный 1°;
Н – ширина диаграммы направленности в горизонтальной плоскости, град.;
V – ширина диаграммы направленности в вертикальной плоскости, град.
На практике часто требуется оценить КНД по отношению не к ненаправленной, а к дипольной антенне. В этом случае значение КНД, вычисленное по указанной формуле, должно быть уменьшено в 1,64 раза. Для расчета КНД в децибелах берут 10 десятичных логарифмов значения КНД (D (дБ) = 10lgD) и для расчета по отношению к диполю уменьшают полученное значение на 2,15 дБ.
КНД связан с коэффициентом усиления по мощности Gp соотношением:
Gp = D⋅η, (1.2)
где: η – коэффициент полезного действия (КПД) антенны.
На метровых и дециметровых волнах КПД для приемных антенн близок к единице – около 0,95.
КОЭФФИЦИЕНТ УСИЛЕНИЯ АНТЕННЫ показывает, насколько уровень наводимого в ней сигнала превышает уровень сигнала на эталонной антенне. В качестве эталонной антенны принимают полуволновой вибратор или изотропную антенну (полностью ненаправленная антенна, имеющая пространственную диаграмму направленности в виде сферы). Реально таких антенн нет, но она является удобным эталоном, с помощью которого можно сравнивать параметры существующих антенн. Коэффициент усиления полуволнового вибратора относительно изотропной антенны равен 2,15 дБ (в 1,28 раза по напряжению или в 1,64 раза по мощности). Следовательно, если возникнет необходимость пересчитать коэффициент усиления антенны по напряжению или по мощности относительно изотропной антенны, то необходимо разделить известную величину на 1,28 или 1,64, в результате чего получим коэффициент усиления относительно полуволнового вибратора. Если G антенны указан в децибелах относительно изотропной антенны, то для пересчета его относительно полуволнового вибратора необходимо вычесть 2,15 дБ.