Категории
Самые читаемые
RUSBOOK.SU » Компьютеры и Интернет » Программирование » Фундаментальные алгоритмы и структуры данных в Delphi - Джулиан Бакнелл

Фундаментальные алгоритмы и структуры данных в Delphi - Джулиан Бакнелл

Читать онлайн Фундаментальные алгоритмы и структуры данных в Delphi - Джулиан Бакнелл

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 92 93 94 95 96 97 98 99 100 ... 119
Перейти на страницу:

if (FTable.Count = 0) then begin

if not Parse (ErrorPos, ErrorCode) then

rcError(tdeRegexParseError, 'MatchString', ErrorPos);

end;

{теперь необходимо выяснить, соответствует ли строка регулярному выражению (сопоставление пустых строк не выполняется)}

Result := 0;

if (S <> '') then

{если указанное регулярное выражение содержит начальный символ привязки, нужно проверить соответствие строки только начиная с первой позиции}

if FAnchorStart then begin

if rcMatchSubString(S, 1) then

Result := 1;

end

{в противном случае необходимо проверить соответствие строки в каждой из позиций и при первом же успешном сопоставлении выполнить возврат}

else begin

for i := 1 to length(S) do

if rcMatchSubString (S, i) then begin

Result := i;

Break;

end;

end;

end;

Если вы еще раз внимательно просмотрите листинг 10.15, то увидите, что код сопоставления уже обеспечивает применение конечного символа привязки. Код воспринимает конечное состояние в качестве признака соответствия регулярному выражению, если регулярное выражение не содержало конечного символа привязки, или же в случае достижения конца строки. При невыполнении любого из этих условий, конечное состояние будет игнорироваться..

Полный исходный код класса TtdRegexEngine можно найти на Web-сайте издательства, в разделе материалов. После выгрузки материалов отыщите среди них файл TDRegex.pas.

Резюме

В этой главе мы рассмотрели как детерминированные (DFA), так и недетерминированные (NFA) конечные автоматы. При этом мы исследовали несколько простых примеров DFA-автоматов.

Мы установили также, что при кодировании вручную конечные DFA-автоматы проще определить, понять и создать соответствующий код, в то время как конечные NFA-автоматы больше подходят для автоматических процессов. В заключение мы реализовали полную машину обработки регулярных выражений, которая выполняет синтаксический анализ и компиляцию регулярного выражения в конечный NFA-автомат (представленный таблицей переходов). Этот конечный NFA-автомат может использоваться для сопоставления строк.

Глава 11. Сжатие данных.

Думая о данных, обычно мы представляем себе ни что иное, как передаваемую этими данными информацию: список клиентов, мелодию на аудио компакт-диске, письмо и тому подобное. Как правило, мы не слишком задумываемся о физическом представлении данных. Заботу об этом - отображении списка клиентов, воспроизведении компакт-диска, печати письма - берет на себя программа, манипулирующая данными.

Представление данных

Рассмотрим двойственность природы данных: с одной стороны, содержимое информации, а с другой - ее физическое представление. В 1950 году Клод Шеннон (Claude Shannon) заложил основы теории информации, в том числе идею о том, что данные могут быть представлены определенным минимальным количеством битов. Эта величина получила название энтропии данных (термин был заимствован из термодинамики). Шеннон установил также, что обычно количество бит в физическом представлении данных превышает значение, определяемое их энтропией.

В качестве простого примера рассмотрим исследование понятия вероятности с помощью монеты. Можно было бы подбросить монету множество раз, построить большую таблицу результатов, а затем выполнить определенный статистический анализ этого большого набора данных с целью формулирования или доказательства какой-то теоремы. Для построения набора данных, результаты подбрасывания монеты можно было бы записывать несколькими различными способами: можно было бы записывать слова "орел" или "решка"; можно было бы записывать буквы "О" или "Р"; или же можно было бы записывать единственный бит (например "да" или "нет", в зависимости от того, на какую сторону падает монета). Согласно теории информации, результат каждого подбрасывания монеты можно закодировать единственным битом, поэтому последний приведенный вариант был бы наиболее эффективным с точки зрения объема памяти, необходимого для кодирования результатов. С этой точки зрения первый вариант является наиболее расточительным, поскольку для записи результата единственного подбрасывания монеты требовалось бы четыре или пять символов.

Однако посмотрим на это под другим углом: во всех приведенных примерах записи данных мы сохраняем одни и те же результаты - одну и ту же информацию - используя все меньший и меньший объем памяти. Другими словами, мы выполняем сжатие данных.

Сжатие данных

Думая о данных, обычно мы представляем себе ни что иное, как передаваемую этими данными информацию: список клиентов, мелодию на аудио компакт-диске, письмо и тому подобное. Как правило, мы не слишком задумываемся о физическом представлении данных. Заботу об этом - отображении списка клиентов, воспроизведении компакт-диска, печати письма - берет на себя программа, манипулирующая данными.

Представление данных

Рассмотрим двойственность природы данных: с одной стороны, содержимое информации, а с другой - ее физическое представление. В 1950 году Клод Шеннон (Claude Shannon) заложил основы теории информации, в том числе идею о том, что данные могут быть представлены определенным минимальным количеством битов. Эта величина получила название энтропии данных (термин был заимствован из термодинамики). Шеннон установил также, что обычно количество бит в физическом представлении данных превышает значение, определяемое их энтропией.

В качестве простого примера рассмотрим исследование понятия вероятности с помощью монеты. Можно было бы подбросить монету множество раз, построить большую таблицу результатов, а затем выполнить определенный статистический анализ этого большого набора данных с целью формулирования или доказательства какой-то теоремы. Для построения набора данных, результаты подбрасывания монеты можно было бы записывать несколькими различными способами: можно было бы записывать слова "орел" или "решка"; можно было бы записывать буквы "О" или "Р"; или же можно было бы записывать единственный бит (например "да" или "нет", в зависимости от того, на какую сторону падает монета). Согласно теории информации, результат каждого подбрасывания монеты можно закодировать единственным битом, поэтому последний приведенный вариант был бы наиболее эффективным с точки зрения объема памяти, необходимого для кодирования результатов. С этой точки зрения первый вариант является наиболее расточительным, поскольку для записи результата единственного подбрасывания монеты требовалось бы четыре или пять символов.

Однако посмотрим на это под другим углом: во всех приведенных примерах записи данных мы сохраняем одни и те же результаты - одну и ту же информацию - используя все меньший и меньший объем памяти. Другими словами, мы выполняем сжатие данных.

Сжатие данных

Сжатие данных (data compression) - это алгоритм эффективного кодирования информации, при котором она занимает меньший объем памяти, нежели ранее. Мы избавляемся от избыточности (redundancy), т.е. удаляем из физического представления данных те биты, которые в действительности не требуются, оставляя только то количество битов, которое необходимо для представления информации в соответствии со значением энтропии. Существует показатель эффективности сжатия данных: коэффициент сжатия (compression ratio). Он вычисляется путем вычитания из единицы частного от деления размера сжатых данных на размер исходных данных и обычно выражается в процентах. Например, если размер сжатых данных равен 1000 бит, а несжатых - 4000 бит, коэффициент сжатия составит 75%, т.е. мы избавились от трех четвертей исходного количества битов.

Конечно, сжатые данные могут быть записаны в форме недоступной для непосредственного считывания и понимания человеком. Люди нуждаются в определенной избыточности представления данных, способствующей их эффективному распознаванию и пониманию. Применительно к эксперименту с подбрасыванием монеты последовательности символов "О" и "Р" обладают большей наглядностью, чем 8-битовые значения байтов. (Возможно, что для большей наглядности пришлось бы разбить последовательности символов "О" и "Р" на группы, скажем, по 10 символов в каждой.) Иначе говоря, возможность выполнения сжатия данных бесполезна, если отсутствует возможность их последующего восстановления. Эту обратную операцию называют декодированием (decoding).

Типы сжатия

Существует два основных типа сжатия данных: с потерями (lossy) и без потерь (lossless). Сжатие без потерь проще для понимания. Это метод сжатия данных, когда при восстановлении данных возвращается точная копия исходных данных. Такой тип сжатия используется программой PKZIB"1: распаковка упакованного файла приводит к созданию файла, который имеет в точности то же содержимое, что и оригинал перед его сжатием. И напротив, сжатие с потерями не позволяет при восстановлении получить те же исходные данные. Это кажется недостатком, но для определенных типов данных, таких как данные изображений и звука, различие между восстановленными и исходными данными не имеет особого значения: наши зрение и слух не в состоянии уловить образовавшиеся различия. В общем случае алгоритмы сжатия с потерями обеспечивают более эффективное сжатие, чем алгоритмы сжатия без потерь (в противном случае их не стоило бы использовать вообще). Для примера можно сравнить предназначенный для хранения изображений формат с потерями JPEG с форматом без потерь GIF. Множество форматов потокового аудио и видео, используемых в Internet для загрузки мультимедиа-материалов, являются алгоритмами сжатия с потерями.

1 ... 92 93 94 95 96 97 98 99 100 ... 119
Перейти на страницу:
На этой странице вы можете бесплатно скачать Фундаментальные алгоритмы и структуры данных в Delphi - Джулиан Бакнелл торрент бесплатно.
Комментарии
Открыть боковую панель
Комментарии
Сергій
Сергій 25.01.2024 - 17:17
"Убийство миссис Спэнлоу" от Агаты Кристи – это великолепный детектив, который завораживает с первой страницы и держит в напряжении до последнего момента. Кристи, как всегда, мастерски строит