Читая между строк ДНК. Второй код нашей жизни, или Книга, которую нужно прочитать всем - Петер Шпорк
Шрифт:
Интервал:
Закладка:
Активность белков, постоянно изменяющих хвосты гистонов, заставляет делать выводы, от которых ученые отказывались всего 15 лет назад. Теперь это общепризнанное мнение: благодаря изменчивости гистоновых хвостов эпигенетический код может оказывать удивительно детальное, тонко дифференцированное и многоаспектное влияние на назначение и свойства клетки.
Заклинание звучит так: модификация гистонов. В зависимости от того, какой нарост и какой малый белок присоединяются к тому или иному участку хвоста, пространственная структура гистона строго определенным образом меняется. В результате нить ДНК либо плотнее, либо свободнее прилегает к барабану, так что ряду дополнительных белков, выполняющих важные функции, легче или труднее к ней присоединиться.
Модификация гистонов. Нуклеосома, на которую наматывается нить ДНК, состоит из восьми гистонов. На разных участках хвостов гистонов Н3 и Н4 ферменты могут прикреплять и снова удалять метильные группы. К метильным группам присоединяются малые белки, влияющие на генную регуляцию. Так как аналогичные процессы происходят и с другими химическими группами, у клетки множество возможностей варьировать активность того или иного участка ДНК.
Например, при помощи фермента клетка удаляет в одном месте или присоединяет в другом какое-либо химическое соединение, вследствие чего ДНК еще плотнее накручивается на свой «барабан». Это мгновенно выключает гены на данном участке. Но может случиться и так, что нить ДНК распускает кольца или вообще сматывается с катушки, что при определенных условиях сразу открывает целые группы генов для считывания, а следовательно, и для активации.
Одновременно нуклеосомы могут распадаться на составные части, чтобы снова собраться в катушку в совершенно другом участке генома. При этом они наматывают какой-либо участок ДНК особенно плотно и деактивируют его. Похоже, помимо этого структура нуклеосомы определяет, на каких именно участках хроматин уплотняется до состояния гетерохроматина. Там гены не считываются ни при каких условиях.
Белковые структуры, расположенные вокруг ДНК, «гораздо динамичнее, чем мы предполагали раньше», считает Стивен Хеникофф из Высшей медицинской школы имени Говарда (Сиэтл, США). По его словам, хвостатые белки образуют в наследственном материале настоящий гистоновый код. Пока еще точно не известно, как именно протекают все эти процессы, но совершенно очевидно: гистоновый код позволяет каждой клетке выбирать одну из множества различных программ генной регуляции, а также создавать новые программы и сохранять их на ближайшее будущее.
В клеточном ядре очень много нуклеосом. Каждая из них выполняет отдельную крохотную задачу — контролирует обвивающийся вокруг нее участок ДНК длиной примерно в 150 генных букв. Но все вместе нуклеосомы помогают работе клетки. Без потрясающей изменчивости крохотных белковых барабанов клетки не смогли бы правильно прочитать свой генетический код, не говоря уже о правильном упорядочении и осмысленном использовании информации.
«Если ДНК — единица хранения генетической информации, то нуклеосома представляет собой единицу хранения эпигенетической информации; она способна реагировать на сигналы из окружающей среды и влиять на способ функционирования генов», — уверен Томас Йенувайн из Фрайбурга.
Мир РНК
Когда Ханс Йорнваль, секретарь стокгольмского Нобелевского комитета, 2 октября 2006 года объявил новых лауреатов этой премии по медицине, по залу прокатился ропот. Такого решения ожидали немногие зрители: лауреатами оказались двое активных ученых лет по сорок с небольшим, чьи важнейшие публикации появились за восемь лет до того. Обычно награждают более заслуженных специалистов.
Тем не менее, по мнению большинства коллег, американцы Эндрю Файер из Стэнфордского университета (Калифорния) и Крейг Мелло из Медицинской школы Массачусетского университета получили высшее признание в своей области совершенно заслуженно. Все-таки они открыли абсолютно неизвестный до этого метод контроля активности генов — так называемую РНК-интерференцию.
РНК — сокращенное название рибонуклеиновой кислоты. Так называется младшая и чрезвычайно разносторонняя сестра ДНК (дезоксирибонуклеиновой кислоты). Молекулы РНК по химической структуре почти не отличаются от ДНК, но состоят из значительно более коротких цепочек нуклеотидов и менее устойчивы к изменениям. Они выполняли роль наследственного материала первых живых организмов на Земле, а простые вирусы по-прежнему используют их в этих целях.
Все виды РНК в основном имеют четко разграниченные функции и чрезвычайно важны для биохимии клетки. В отличие от ДНК они могут состоять не из двух цепочек с попарно связанными основаниями, но из одной нити с открытыми основаниями, а порой имеют форму петли. Ввиду многообразия молекул РНК биологи благоговейно говорят о целом мире РНК, который исследован еще далеко не полностью. Самые важные представители этого мира — уже упоминавшиеся матричные (информационные) и транспортные РНК. Появились и новые звезды — микро-РНК.
До открытия Файера и Мелло последних считали побочным продуктом, своего рода информационными РНК без информации, которые образуются, когда считывающие белки по ошибке переводят какой-нибудь участок мусорной ДНК в информационную РНК. Сегодня уже известно, что этот процесс происходит не случайно, а соответствующие участки ДНК — вовсе не мусор. Скорее они представляют собой третью важную систему переключателей эпигенетического кода.
Сначала клетка синтезирует две зеркальные нити микро-РНК, которые объединяются в так называемую двухцепочечную РНК. Эти молекулы, напоминающие короткую веревочную лестницу, выглядят точно так же, как наследственный материал вторгшихся в клетку вирусов, стремящихся размножиться с помощью биохимического аппарата инфицированных клеток и таким образом вызвать болезнь. Клетка борется с РНК таким же способом, как и с вирусами: появляется фермент под названием дайсер (гранулятор) и разбивает их на кусочки длиной от 21 до 27 нуклеотидов.
Большинство таких фрагментов уничтожаются клеткой. Но некоторые соединяются с мультибелковым комплексом RISC,[4] который спасает их от уничтожения. Затем эти соединения отправляются на поиски подходящей им матричной РНК. Последняя в значительной степени идентична одной из цепочек исходной микро-РНК, а потому в ней где-то обязательно найдется участок, парный одному из многих получившихся фрагментов. Как только нужная молекула обнаруживается, она приклеивается к соответствующему фрагменту РНК, как бедная муха к липучке. В заключение по-прежнему присоединенный к фрагменту RISC осуществляет быструю расправу — он превращает матричную РНК в кучку нуклеотидного мусора, который мгновенно собирают и перерабатывают пустые транспортные РНК.
Теперь клетка не может синтезировать белок, закодированный в матричной РНК. Соответствующий ген молчит, хотя на уровне ДНК постоянно происходит его считывание.
Но и это еще не все. С помощью своих микро-РНК клетка может не только запустить или остановить синтез того или иного белка, как она это делает при помощи других эпигенетических переключателей. Клетка способна также немного подавить активность гена. Чем больше липучек она выкладывает против конкретной матричной РНК, тем меньше соответствующих ей закодированных молекул достигает цели и тем меньше конкретного белка будет синтезировано.
Крейг Мелло и Эндрю Файер назвали этот механизм генной регуляции РНК-интерференцией, потому что в ходе процесса две отвечающие друг другу молекулы — матричная РНК и микро-РНК — выключают друг друга точно так же, как во время физической интерференции взаимно ослабляются встречные волны. Исследователи выявили этот принцип в результате опыта: они вводили круглым червям двухцепочечные РНК и установили, что после этого синтез определенных белков идет на убыль.
Сначала никто не догадывался о далеко идущих последствиях открытия. Все это, вероятно, «какой-то странный механизм, свойственный только червям», решили сами исследователи. Скорее всего, в нормальной жизни животных он не играет никакой роли, поскольку происходит только в рамках эксперимента. Однако ученые сильно ошибались. Многие специалисты бросились изучать этот эффект и за короткое время выявили множество новых подробностей.
Очевидно, еще в незапамятные времена своего рода праклетка выработала механизм взаимного выключения рибонуклеиновых кислот, чтобы помешать вирусным генам, спасшимся от фермента дайсера и успешно внедренным в ДНК, реализовать свои «монтажные схемы» и вызвать болезнь. Видимо, некоторое время спустя другие клетки пришли к тому, чтобы с помощью микро-РНК регулировать и собственную систему считывания генов.