Психическая регуляция деятельности. Избранные труды - Борис Ломов
Шрифт:
Интервал:
Закладка:
Характеристики глазодвигательной системы как следящего устройства
Из приведенных экспериментальных данных следует, что элементарные движения глаз осуществляются не по заранее сформированной программе, а в соответствии с характеристиками зрительно воспринимаемого стимула, т. е. их регулятором являются зрительные сигналы. Это дает основание предполагать, что развитие элементарного движения глаза обусловливается изменением зрительной стимуляции. По-видимому, на исходном уровне глазодвигательная система функционирует не по принципу системы с программным регулированием, обеспечивающим изменение регулируемой величины по заранее определенному закону, а скорее как следящее устройство.
Среди всех типов систем автоматического управления следящие системы являются наиболее универсальными, поскольку их функционирование осуществляется по наиболее общему закону изменения регулируемой величины. В этих системах меняющееся по любому произвольному закону входное воздействие преобразуется в перемещение исполнительного двигателя. Регулируемая величина X в следящих системах, функционирующих по принципу отклонения, изменяется по некоторому заданному на входе закону Хо (I) под влиянием управляющего воздействия У, которое вырабатывается управляющим устройством в функции рассогласования DХ = Х0 – X.
Изложенные выше результаты экспериментов, а также другие данные [3, 5, 6, 7] позволяют отнести глазодвигательную систему к типу следящих. Для случаев, когда глазодвигательная система работает в режиме слежения за движущимся стимулом, это кажется несомненным. Однако можно предположить, что и в других случаях (саккадические движения) она работает как следящая.
Глазодвигательная и собственно зрительная системы соединены цепью обратной связи, поддерживающей функционирование на уровне автоматического слежения. Если сигналы, управляющие движением, отсутствуют либо компенсируются, глазодвигательная система будет находиться в состоянии равновесия. Именно в этом состоянии находится глазодвигательная система при фиксации центрально расположенного стимула. Когда сигналы, поступающие на исполнительный двигатель, превосходят силы упругости, удерживающие систему в состоянии равновесия, она приходит в движение. При этом скорость движения находится в определенной зависимости от величины сигналов. В свою очередь величина управляющего сигнала определяется расстоянием места воздействия стимула от центра и его интенсивностью (относительная яркость).
Собственно зрительная система, как известно, является многоканальной, а сетчатка может быть представлена в виде системы входов, упорядоченных в пространстве. В условиях свободного рассматривания при появлении стимула на периферии возбуждается один из входов (или группа близко расположенных входов), возникают рассогласование (Х) и соответствующий его величине управляющий сигнал (Y), что вызывает отрабатывание глазодвигательной системы. При этом чем дальше находится возбуждаемый канал от fovea, тем больше величина управляющего сигнала, а следовательно, и тем большая скорость задается исполнительным механизмам. В свою очередь перемещение глаза влечет за собой изменение положения стимула относительно сетчатки и подключает новые входные каналы. Возбуждение каждого очередного входа дает новый сигнал, и, хотя его величина меньше величины начального сигнала, поскольку при движении глаза рассогласование DХ уменьшается, этот новый сигнал подключается в тот момент, когда исполнительный орган уже находится в движении с некоторой скоростью. В результате скорость движения увеличивается. Плавное нарастание скорости в первой фазе скачка обусловлено, на наш взгляд, тем, что управляющие сигналы последовательно «накладываются» на изменяющуюся в результате воздействия предшествующих управляющих сигналов регулируемую величину.
По мере приближения сигнала к fovea величина каждого нового управляющего сигнала уменьшается, а соответственно уменьшается и ускорение движения (к концу первой фазы скачка).
Иначе говоря, по ходу движения глаза изменяются зрительная стимуляция, величина входного сигнала, а соответственно и скорость этого движения.
Предложенная схема, как нам представляется, может объяснить динамику изменения скорости скачка в первой фазе. Однако если ограничиться только этим, то нужно было бы ожидать, что максимальная скорость движения разовьется как раз к тому моменту, когда стимул совместится с fovea. В силу этого система должна была бы «проскочить» стимул и прийти в колебательное состояние с уменьшающейся амплитудой.
Подобное явление могло бы иметь место, если бы глазодвигательная система не обладала проприоцепцией. Можно предположить, что скорость скачка ограничивается включением проприоцепции глазных мышц (обратной связи), выполняющих тормозящую функцию. Величина проприоцептивного сигнала определяется скоростью изменения длины глазных мышц, т. е. скоростью поворота глаза. С возрастанием скорости увеличивается и величина проприоцептивного сигнала, а значит, и его тормозящее действие.
Поскольку этот сигнал возникает только в результате движения, т. е. спустя некоторое время после начала этого движения, тормозящее действие проприоцепции проявляется только во второй фазе скачка (участок ниспадающей скорости). Видимо, проприоцепция выступает в роли своего рода скоростного демпфера.
Таким образом, содружественное действие зрительной и проприоцептивной стимуляций обусловливает наблюдаемый характер изменения скорости движения глаза во время скачка (синусоидообразность кривой изменения скорости).
В условиях стабилизации стимула относительно сетчатки величина сигнала рассогласования не изменяется, поэтому последовательно возникающие управляющие сигналы не «накладываются» друг на друга (что характерно для свободного рассматривания), а следовательно, нет и специфического для скачка нарастания скорости. Величина начального сигнала полностью определяет скорость «скользящего» движения, которое, как отмечалось, является равномерным[4].
В этих условиях, поскольку нет изменения скорости, тормозящие проприоцептивные сигналы обратной связи, по-видимому, очень слабы для того, чтобы повлиять на режим движения. Исходя из наших данных, можно предположить, что они начинают играть какую-то роль в управлении движением только тогда, когда скорость достигает 15–17 град/сек, и этой величиной ограничивают скорость скользящих движений.
После исчезновения вызываемого стимулом зрительного ощущения (в силу местной адаптации) прекращается поступление управляющих сигналов на исполнительные механизмы, система останавливается, а затем под действием упругих сил возвращается в исходное положение.
Для пояснения предложений схемы рассмотрим простейший вариант следящей системы, работающей на основе принципа отклонения (рисунок 1.5).
Система состоит из оптического устройства (7), светочувствительных датчиков (2) и поворотных двигателей-моторов (3). Датчики-фотоэлементы расположены так, что каждый из них закрывает одну половину «поля зрения» и может приводить в движение только один двигатель, отклоняющий оптическую систему в определенном направлении. Такая следящая система работает следующим образом. Если свет от внешнего источника попадает, например, на левый датчик, в цепи возникает электрический ток, приводящий в движение правый мотор. Если свет падает на правый датчик, в движение приходит левый мотор. Моторы включены в схему таким образом, что при засветке одного из фотоэлементов оптическая система будет поворачиваться в сторону источника света до тех пор, пока свет не упадет на другой фотоэлемент; тогда в действие придет другой мотор, т. е. возникнет сила, противодействующая действию первого мотора, и оптическая система остановится.
Рис. 1.5. Иллюстративная схема следящей системы
1 – корпус телескопа; 2 – фотоэлементы; 3 – электромоторы
Если представить такое сравнительно простое следящее устройство в качестве аналога глазодвигательной системы, можно видеть, что оно будет выполнять некоторые элементарные функции, характерные для глазодвигательной системы: слежение за движущимся объектом; смену точек фиксации при резком перемещении стимула из центрального положения, где он освещал оба фотоэлемента, на периферию; движение оптической системы в том случае, когда стимул стабилизирован относительно нее (в этом последнем случае движение будет происходить до тех пор, пока система не дойдет до крайнего положения, либо пока не прекратится действие стимула).
Некоторое усложнение описанного варианта следящей системы, а именно увеличение числа фотоэлементов и включение отрицательной обратной связи, ограничивающей развиваемую системой скорость (аналог проприоцепции), позволяет еще более полно описать работу глазодвигательной системы. Усложненный вариант следящей системы представлен на рисунке 1.6.