Невозможность второго рода. Невероятные поиски новой формы вещества - Пол Стейнхардт
Шрифт:
Интервал:
Закладка:
В алмазе каждый атом углерода соединен с четырьмя другими атомами в трехмерную сеть. В графите же каждый атом углерода связан только с тремя другими атомами в пределах двумерного листа. Эти углеродные слои как бы сложены в стопку один к другому, подобно листам бумаги.
Алмазная сеть крайне прочна, ее трудно разрушить. Напротив, листы углерода легко соскальзывают друг с друга, опять же как листы бумаги. Это и есть основная причина того, почему алмаз настолько тверже графита. И это различие самым непосредственным образом отражается на их практическом использовании. Алмаз, будучи одним из самых твердых известных материалов, используется в буровых головках. Графит же настолько мягок, что его используют в карандашах. Листы углерода отслаиваются при перемещении кончика карандаша по странице.
Этот пример демонстрирует, как знание о симметрии расположения атомов того или иного вещества позволяет понимать и предсказывать его свойства и находить для него наиболее эффективные способы применения. То же относится и к материалам, полученным при быстром охлаждении, которые ученые называют стеклянными, или аморфными. Они существенно отличаются от медленно охлажденных кристаллов по своим электрическим, тепловым, упругим и вибрационным свойствам. Медленно охлажденный кристаллический кремний, например, широко используется в электронной промышленности. А аморфный кремний, не такой твердый, как медленно охлажденный, предпочтителен для использования в некоторых типах солнечных батарей.
Вопрос, который мы с Нельсоном и Рончетти хотели исследовать, состоял в том, имеют ли некоторые твердые материалы, полученные быстрым охлаждением, определенную упорядоченность, которой прежде никто не замечал и которая могла бы дать дополнительные преимущества в прикладных задачах.
К тому моменту я уже несколько лет занимался разработкой способов моделирования быстрого охлаждения жидкостей. Меня приглашали на лето – сначала как аспиранта, а затем как постдока – работать над теоретическими компьютерными моделями в Йельском университете и в Исследовательском центре IBM имени Томаса Дж. Уотсона. Мои основные научные интересы в то время лежали в другой области. Однако я пользовался этими исследовательскими возможностями, поскольку был заинтригован тем фактом, что науке все еще было неизвестно расположение атомов в такой примитивной среде, как аморфное вещество. Тут я вполне сознательно следовал одному из самых важных уроков, полученных от моего наставника Ричарда Фейнмана: доверяй своему чутью и ищи достойные задачи, куда бы они тебя ни вели, даже если новое направление не будет совпадать с тем, в котором ты прежде предполагал двигаться.
Летом 1973-го, перед моим завершающим годом учебы в Калтехе, я разработал первую модель стекла и аморфного кремния для генерируемой компьютером непрерывной случайной сети (НСС-модель). Эта модель широко использовалась для предсказания структурных и электронных свойств этих веществ. В последующие годы работы с Рончетти я разработал и более сложные программы для моделирования процесса быстрого остывания и затвердевания.
В 1980 году случайный разговор в Гарварде с Дэвидом Нельсоном дал новую цель всем моим трудам по теме аморфных материалов. Мои компьютерные модели можно было адаптировать для проверки гипотезы Нельсона и Тонера о кубатическом веществе.
Дав своей аудитории в Пенне краткое введение в историю вопроса, я перешел к кульминации своей лекции. Если предположение о кубатической фазе верно, то атомные связи в моей новой компьютерной модели не должны оказаться расположенными случайным образом. В среднем они должны тяготеть к “кубической ориентации”, то есть стремиться к выравниванию вдоль ребер куба.
Мы разработали сложный математический тест для эксперимента, призванного проверить, демонстрирует ли усредненная ориентация связей ожидаемую кубическую симметрию, и вывели количественный параметр, характеризующий, насколько сильно проявляется это кубическое выравнивание.
Результат оказался… абсолютно провальным. Мы не нашли никаких признаков преимущественного выравнивания связей вдоль ребер куба, предсказанного Нельсоном и Тонером.
Однако совершенно случайно мы открыли нечто даже более интересное. Разрабатывая количественный математический тест для проверки ориентации атомных связей в соответствии с кубической симметрией, мы поняли, что будет несложно адаптировать этот тест к поиску любых других возможных вращательных симметрий. Поэтому вдобавок мы использовали тест для количественной оценки каждой симметрии по степени выравнивания атомных связей вдоль различных направлений.
К нашему огромному удивлению, именно запрещенная симметрия получила гораздо более высокую оценку, чем все остальные, – та самая невозможная симметрия икосаэдра, фигуры, изображенной ниже слева.
Я знал, что некоторые слушатели в аудитории уже должны быть знакомы с икосаэдром, поскольку эта трехмерная фигура использовалась в качестве игральной кости (см. фото внизу справа) в популярной игре Dungeons & Dragons (“Подземелья и драконы”). Другие могли знать про него из курса биологии, поскольку такой формой обладают некоторые вирусы человека. А слушатели, имевшие склонность к геометрии, должны были распознать в нем одно из пяти платоновых тел – трехмерных фигур с одинаковыми гранями, ребрами одинаковой длины и одинаковыми углами.
Важная особенность икосаэдра состоит в том, что, осматривая его со стороны любой из вершин, мы наблюдаем пятиугольную форму с симметрией пятого порядка. Ту самую симметрию пятого порядка, запрещенную для двумерных замощений и трехмерных кристаллов.
Разумеется, нет ничего невозможного в использовании одной плитки в форме правильного пятиугольника. Одиночную плитку можно взять любой формы. Однако невозможно покрыть пол одними лишь правильными пятиугольниками, не оставляя зазоров. То же относится и к икосаэдру. Можно сделать отдельную трехмерную игральную кость в форме икосаэдра. Но вот заполнить пространство икосаэдрами так, чтобы между ними не осталось пустот и отверстий, уже не получится, как показано на фото выше.
При таком числе вершин, каждая из которых обладает запрещенной симметрией пятого порядка, икосаэдр был прекрасно известен исследователям, изучавшим строение вещества, в качестве самой запретной симметрии в расположении атомов. Этот факт считался настолько фундаментальным, что часто излагался в первой главе учебников. И все же икосаэдрическая симметрия каким-то образом получила самую высокую оценку по выравниванию атомных связей в нашем компьютерном эксперименте.
Строго говоря, наши результаты прямо не противоречили законам кристаллографии. Эти правила применимы только к макроскопическим фрагментам вещества, содержащим десятки тысяч атомов и более. Для намного меньших групп атомов, как те, что изучались в нашей модели, такого категорического запрета не существовало.
В предельном случае маленького кластера, содержащего, например, лишь тринадцать одинаковых атомов золота, межатомные силы естественным образом приводят атомы к икосаэдрическому расположению. Один атом оказывается в центре, а двенадцать окружающих его атомов размещаются на вершинах икосаэдра. Так происходит потому, что межатомные силы работают сродни пружинам и стремятся расположить атомы в форме плотно упакованной симметричной фигуры. Тринадцать атомов образуют икосаэдр потому, что в данном случае он является самой симметричной из всех достижимых плотно упакованных конфигураций. Однако с добавлением все новых и новых