Наука. Величайшие теории: выпуск 7: Эврика! Радость открытия. Архимед - Eugenio Aguilar
Шрифт:
Интервал:
Закладка:
Закон Архимеда изучают во всех школах мира — это один из физических постулатов, которые легко понять интуитивно. Любой человек испытывал уменьшение своего веса при погружении в бассейн, видел летящие воздушные шарики, смотрел на лодки, плавающие по морю, помнит кадры с подводными лодками, спускающимися в океанские глубины. Это только немногие примеры, в основе которых лежит закон Архимеда. Но в его эпоху многие понятия были еще неизвестны или только исследовались. Так, ему пришлось вводить понятие удельного веса (плотности), чтобы иметь возможность объяснить явление плавучести. Тем не менее он ничего не знал о понятии силы, которое в наши дни используется для изучения закона Архимеда, носящего теперь еще одно название: закон гидростатики. Есть много способов его формулировки, один из самых распространенных: «На всякое тело, полностью или частично погруженное в воду или иную жидкость, вертикально вверх действует выталкивающая сила, равная весу жидкости, вытесненной телом». Используя современную терминологию, выталкивающая сила и вес — это две силы, и надо было ждать времен Ньютона, чтобы получить серьезное и точное математическое описание этих величин. Однако закон Архимеда можно трактовать и с помощью геометрических инструментов или пользуясь понятием плотности.
Вес тела в воздухе всегда больше его веса в жидкости. Кажущийся вес в жидкости будет равен реальному весу минус выталкивающая сила. Так что способ вычислить выталкивающую силу Fe, которой подвергается тело,состоит в том, чтобы измерить его вес в воздухе Fp, затем в жидкости F'р и вычесть одно из другого: Fe=Fp-F'р.
Архимед знал, что тело, погружаясь в воду (здесь и далее под водой понимается любая среда, будь то жидкость или газ), должно вытеснить равное объему погруженного тела количество воды. Вот почему рассказ о ванной служит хорошей иллюстрацией для закона гидростатики: если поместить тело в ванну, полную воды, часть жидкости выльется, то есть отправной пункт такой: Vпогруженной части = Vвытесненной воды
С точки зрения приложения сил получается, что вода (или другая среда) действует выталкивающей силой на погруженное тело (см. рисунок на стр. 42). То есть сила FE по модулю равна весу Fp вытесненной воды. Это значит FE = FР(воды). Вес (сила действия тела на опору или подвес) вытесненной воды равен произведению ее массы на земное ускорение (значение которого у поверхности земли составляет примерно 9,8 м/с²): FР(воды) = mводы • g. Добавив математическую формулу расчета плотности, то есть dводы = mводы/Vводы , можно резюмировать: FР(воды) = Vводы • dводы • g. Мы уже говорили, что объем вытесненной воды равен объему погруженной части тела, из чего выводится FР(воды) = Vтела • dводы • g. Наконец, опустив нижние индексы, поскольку вес вытесненной воды равен выталкивающей силе, действующей на тело, мы можем сформулировать закон гидростатики с помощью уравнения FE= V • d • g, где FE — это выталкивающая сила, которую испытывает тело, измеряющаяся в ньютонах (Н, данная единица измерения названа в честь Ньютона); V — объем погруженной части тела, измеряемый в м³; d — плотность среды, измеряемая в кг/м³; a g — ускорение свободного падения.
От мифа к реальностиКак это бывает с любой легендой, история короны тирана Гиерона — отчасти правда, а отчасти миф. Можно утверждать, что элемент выдумки есть даже в самом методе, приписываемом Архимеду, с помощью которого он раскрыл обман хитрого ювелира.
Конечно, Архимед мог вывести ремесленника на чистую воду, но с помощью другого, более сложного метода, использовав для этого не только закон гидростатики, но и закон рычага. Посмотрим описание данного открытия, сделанное Марком Витрувием:
«Тогда, исходя из этого открытия, он, говорят, сделал два слитка одинакового веса с короной — один из золота, другой из серебра. Сделав это, он взял объемистый сосуд, наполнил его до самых краев водой и опустил в него серебряный слиток, при погружении которого вода вытекла в количестве, равном величине слитка. Вынув затем слиток, он долил воды, отмерив ее секстарием, так, чтобы она опять сравнялась с краями, как и раньше. Так он определил, что серебро по весу соответствует известному количеству воды. Проделав этот опыт, он подобным же образом опустил в наполненный сосуд золотой слиток и, вынув его, нашел посредством прежнего измерения, что воды убавилось не столько же, а меньше, насколько меньше был объем золотого слитка сравнительно с равным ему по весу серебряным. После же этого, вновь наполнив сосуд и опустив в то же количество воды саму корону, он нашел, что воды вытекло больше, чем при погружении золотого слитка такого же веса; и таким образом, исходя из того, что корона вытеснила больше воды, чем слиток, он показал примесь в золоте серебра и обнаружил покражу подрядчика».
Хотя метод теоретически совершенно правильный, заметим, что вряд ли Архимед пользовался именно таким способом, как описано выше. Сложность состоит в измерении объемов. Сначала для лучшего понимания проблемы упорядочим шаги, описанные Витрувием.
1. Архимед взял два куска материала, про весу идентичные короне, — кусок серебра (mр) и золота (mo).
2. Затем он погрузил серебро в определенное количество воды, из-за чего вылился некоторый ее объем Vp, который ученый измерил.
3. Потом он погрузил золото в такое же количество воды, отчего вылился объем Vo жидкости, который он также измерил.
4. Архимед обнаружил, что Vp больше, чем Vo.
5. Наконец, он опустил настоящую корону в то же количество воды, и она вытеснила объем Vo этой воды, который он тоже измерил.
Иллюстрация к легенде, согласно которой Архимед нашел решение задачи с короной Гиерона,когда находился в общественной бане. 1575 год.
Среди фраз, которые приписывают Архимеду, самая известная — «Дайте мне точку опоры,и я переверну Землю». Ее цитирует Папп Александрийский в VIII книге «Математического собрания». Рисунок воспроизводит гравюру из берлинского издания Фридриха Отто Хулча 1878 года.
6. Ученый выяснил, что объем V, вытесненный короной, больше, чем объем воды, вытесненной золотом, и меньше, чем объем, вытесненный серебром ( Vp > Vc > Vo). Это доказало, что в короне была примесь серебра, то есть она состояла не из одного золота.
Теперь давайте воспроизведем этот опыт на наиболее правдоподобном примере, исходя из реальных данных, которыми мы располагаем, и следуя изложенному выше алгоритму, чтобы выявить, если необходимо, противоречия. Мы помним, что, как было отмечено ранее, любой погруженный в воду предмет вытесняет количество воды, равное его объему. Объем предмета можно вычислить исходя из его плотности и массы по известной формуле: d = m/V.
1. Чтобы не мелочиться, возьмем в качестве примера самую большую из сохранившихся золотых корон эпохи Архимеда. Речь идет о «венце из Вергины» (город в нынешней греческой Центральной Македонии), датированном IV веком до н. э. Этот венец имеет массу 714 г и диаметр 18,5 см. Учитывая, что некоторые из его листьев утеряны, и для облегчения расчетов примем массу короны за 1000 г. Итак, для опыта у нас есть 1000 г серебра, 1000 г золота и корона аналогичного веса, состав которой и является предметом эксперимента.
2. Теперь, в качестве второго шага, мы опускаем 1000 г серебра в воду. Так как плотность серебра равна 10,5 г/см³, объем вытесненной воды будет 95,2 см³:
3. Третьим шагом будет погружение в воду 1000 г золота. Поскольку его плотность составляет 19,3 г/см³, вытесненный объем воды будет 51,8 см³:
4. Объем воды, вытесненной 1000 г серебра, больше, чем объем воды, вытесненной 1000 г золота, так как плотность серебра меньше, и та же его масса занимает больше места.
5. Наконец, в воду опускается корона, и замеряется количество вытесненной ею воды. Тут надо сделать еще одно добавление. Предположим, что к золоту короны примешано 30 % серебра.
6. После погружения короны в воду можно заметить, что она вытесняет большее количество воды по сравнению с золотом и меньшее — по сравнению с серебром. Согласно нашему предположению, 30% от 1000 г короны составляет серебро и 70 % — золото:
Объем воды, вытесненной короной (64,8 см³), больше, чем вытесненной золотом (51,8 см³), что могло бы доказать обман ювелира.
Но как измерить столь малые объемы? Заметьте: разница составляет всего 13 см³, что примерно равно объему пары орехов.
В истории предлагались разные методы измерения, рассмотрим два из них — измерить уровень оставшейся в сосуде воды или собрать вытесненную воду в другой сосуд. Первый вариант, по-видимому, невероятен для той эпохи и выглядит приемом, далеким от возможностей Архимеда. Согласно первому способу, после погружения короны и других металлов в сосуд вода поднимется на некоторую высоту. Если сосуд цилиндрический (см. рисунок), то и поднимающаяся вода имеет форму цилиндра. Предположим, диаметр сосуда равен 20 см, тогда поверхность воды имеет площадь 314 см². С этими данными мы можем вычислить высоту (А), на которую поднимется вода в каждом из случаев: