Категории
Самые читаемые
RUSBOOK.SU » Научные и научно-популярные книги » Прочая научная литература » Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике. - Дербишир Джон

Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике. - Дербишир Джон

Читать онлайн Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике. - Дербишир Джон

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 59 60 61 62 63 64 65 66 67 ... 95
Перейти на страницу:

А ведь мы едва начали нашу деятельность по перемножению бесконечного числа скобок. Следующий шаг состоит в том, чтобы перебрать все возможные способы выбрать три не-единицы (при всех остальных единицах). Например, 1××1×1×××1×1×…, из чего возникает .Теперь результат разрастается до

где каждое число в третьей строке есть произведение трех различных простых.

В предположении, что мы продолжаем так поступать, а также в предположении, что получающиеся члены можно переставлять, как мы пожелаем, выражение (15.1) превращается в следующее (15.4):

Натуральные числа в правой части — это… что? Это заведомо не все натуральные числа: 4, 8, 9 и 12 там отсутствуют. Но и не простые: присутствующие там 6, 10, 14 и 15 не являются простыми. Если оглянуться на процесс перемножения этого бесконечного количества скобок, то станет ясно, что ответ такой: каждое натуральное число, которое равно произведению нечетного числа (включая 1) различных простых, взятое со знаком минус, и, кроме того, каждое натуральное число, которое равно произведению четного числа различных простых, взятое со знаком плюс. Отсутствуют такие числа, как 4, 8, 9, 12, 16, 18, 20, 24, 25, 27, 28, … — т.е. числа, которые делятся на квадрат некоторого простого.

Поприветствуем функцию Мебиуса! Она названа по имени немецкого математика и астронома Августа Фердинанда Мебиуса (1790–1868).[137]

Рисунок 15.4. Лента Мебиуса и муравей на ней.

В наше время ее общепринято обозначать греческой буквой μ, что произносится как «мю» — греческий эквивалент буквы «м».[138] Приведем полное определение функции Мебиуса.

• Ее область определения есть N, то есть все натуральные числа 1, 2, 3, 4, 5, ….

• μ(1) = 1.

• μ(n) = 0, если среди делителей числа n есть квадрат.

• μ(n) = −1, если число n простое или является произведением нечетного числа различных простых чисел.

• μ(n) = 1, если число n является произведением четного числа различных простых чисел.

Такое определение функции может показаться вам страшно громоздким. Однако функция Мебиуса приносит колоссальную пользу в теории чисел и далее в этой книге будет играть ведущую роль. В качестве примера приносимой ею пользы заметим, что все трудоемкие алгебраические действия, через которые нам пришлось продираться, сводятся к изящному выражению (15.5):

V.

B истории Гипотезы Римана наряду с самой функцией μ(n) не меньшую роль играет ее нарастающее значение, т.е. результат сложения μ(1) + μ(2) + μ(3) + … + μ(k) для некоторого числа k. Так определяется «функция Мертенса» М(k). Ее первые 10 значений (т.е. значения при k = 1, 2, 3, …, 10) равны 1, 0, −1, −1, −2, −1, −2, −2, −2, −1. Функция M(k) весьма нерегулярна — она совершает колебания в обе стороны вокруг нулевого значения в стиле, который математики называют «случайными блужданиями». Для аргументов, равных 1000, 2000, …, 10 000, ее значения равны 2, 5, −6, −9, 2, 0, −25, −1, 1, −23. Для аргументов миллион, 2 миллиона, …, 10 миллионов ее значения равны 212, −247, 107, 192, −709, 257, −184, −189, −340, 1037. Если не обращать внимания на знаки, то видно, что величина функции M(k) возрастает, но помимо этого никакой ясной картины не просматривается.

Из выражения (15.5) видно, что поведение функций μ и M (накапливающейся μ) жестко привязано к дзета-функции, а тем самым и к Гипотезе Римана. На самом деле если вам удастся доказать приведенную ниже теорему 15.1, то вы сможете заключить, что Гипотеза Римана верна!

Теорема 15.1

M(k) = Ο(k1/2).

Однако если теорема 15.1 не верна, то отсюда еще не следует, что не верна Гипотеза. Математики говорят, что теорема 15.1 сильнее Гипотезы.[139] Слегка ослабленный вариант, сформулированный как теорема 15.2, в точности равносилен Гипотезе:

Теорема 15.2

M(k) = Ο(k1/2+ε) для любого сколь угодно малого числа ε.

Если теорема 15.2 верна, то верна и Гипотеза; а если она не верна, то не верна и Гипотеза. Это в точности эквивалентные теоремы. Мы еще вернемся к этому в главе 20.vi.

Глава 16. Вверх по критической прямой

I.

В 1930 году Давиду Гильберту исполнилось 68 лет. В соответствии с принятыми в Геттингенском университете правилами он вышел на пенсию. Посыпались почести. Среди них — решение властей Кенигсберга предоставить прославленному сыну этого города почетное гражданство. Церемония должна была состояться на открытии запланированного на осень того года съезда Общества немецких ученых и врачей. Понятно, что случай обязывал к ответному слову. Таким образом, 8 сентября 1930 года в Кенигсберге Гильберт выступил со своей второй великой публичной речью.

Его выступление было озаглавлено «Логика и познание природы». Цель Гильберта состояла в том, чтобы высказать некоторые положения о связи между нашим внутренним миром — нашими умственными процессами, включая и те, с помощью которых мы создаем и доказываем математические истины, — и физической вселенной. Подобные идеи, разумеется, имеют долгую философскую родословную, особую роль в которой сыграл другой великий сын Кенигсберга — живший в XVIII веке философ Иммануил Кант. По существу, как мы увидим в главе 20, Гильберт высказал идеи, имеющие отношение к современному пониманию Гипотезы Римана. Впрочем, во время выступления Гильберта в Кенигсберге никто этого, конечно, не знал.

Было предусмотрено, что после окончания выступления Гильберт повторит его сокращенный вариант по местному радио — в те времена, понятно, бывшему новинкой. Этот сокращенный вариант речи Гильберта был записан и издан на граммофонной пластинке (78 оборотов в минуту). (В Веймарской Германии, похоже, слова «математик-знаменитость» не содержали в себе внутреннего противоречия). В наши дни эту запись можно найти в Интернете. Сделав лишь небольшое усилие, вы услышите, как голос самого Гильберта произносит шесть слов, за которые его более всего помнят и которые выгравированы на его надгробии на Геттингенском кладбище. Это последние слова кенигсбергской речи.

Гильберт твердо верил в неограниченную мощь человеческого разума в постижении истин и природы, и математики. Во времена его юности определенной популярностью пользовались пессимистические теории французского философа Эмиля Дюбуа-Реймона. Дюбуа-Реймон утверждал, что определенные вещи — например, природа материи и человеческого сознания — в принципе непознаваемы.[140] Ему принадлежит тезис ignoramus et ignorabimus — «мы не знаем и не узнаем». Гильберту никогда не импонировала эта мрачная философия. И теперь, когда весь мир (во всяком случае, вся его научно-математическая часть) внимал его словам, он ясно заявил о своем несогласии:

1 ... 59 60 61 62 63 64 65 66 67 ... 95
Перейти на страницу:
На этой странице вы можете бесплатно скачать Простая одержимость. Бернхард Риман и величайшая нерешенная проблема в математике. - Дербишир Джон торрент бесплатно.
Комментарии
Открыть боковую панель
Комментарии
Сергій
Сергій 25.01.2024 - 17:17
"Убийство миссис Спэнлоу" от Агаты Кристи – это великолепный детектив, который завораживает с первой страницы и держит в напряжении до последнего момента. Кристи, как всегда, мастерски строит