Решающий шаг к миру. Водородная бомба с атомным обжатием РДС-37 - Игорь Андрюшин
Шрифт:
Интервал:
Закладка:
Если применяется магнитное поле, то смесь D + T может иметь кольцеобразную форму. При этом имеет значение лишь поперечная теплопроводность. За смесью D + Т находится чистый D».
ИССЛЕДОВАНИЯ ПО ДЕЙТЕРИЕВОЙ БОМБЕ В СССР
И.И. Гуревич, Я.Б. Зельдович, И.Я. Померанчук и Ю.Б. Харитон подготовили материалы «Использование ядерной энергии легких элементов», которые были заслушаны на заседании технического совета Специального комитета при СНК СССР 17 декабря 1945 г. В докладе, сделанном Я.Б. Зельдовичем, рассматривалась возможность возбуждения термоядерной детонации в цилиндре с дейтерием в условиях неравновесного режима горения /6, с. 19/. В 1991 г. этот доклад был полностью опубликован.
Представляет интерес решение технического совета по докладу — первое официальное решение, касающееся работ в СССР по водородной бомбе:
«1. Считать необходимым провести систематические измерения эффективности сечений в ядрах легких элементов, использовав для этого высоковольтный электростатический генератор Харьковского физико-технического института.
2. Поручить профессору Я.Б. Зельдовичу в трехдневный срок подготовить задание по изучению реакций в ядрах легких элементов и представить их на рассмотрение технического совета».
Обращает на себя внимание тот факт, что решение технического совета касается только базы исходных экспериментальных данных и не содержит поручений, относящихся к организации и проведению расчетно-теоретических работ по исследованию возможности создания сверхбомбы.
С июня 1946 г. теоретические исследования возможности использования ядерной энергии легких элементов начали проводиться в Институте химической физики (в Москве) группой в составе С.П. Дьякова и А.С. Компанейца под руководством Я.Б. Зельдовича. Первые итоги работы этой группы были обсуждены на заседании Научно-технического совета Первого главного управления, состоявшемся 3 ноября 1947 г.
Яков Борисович Зельдович
(1914-1987),
выдающийся физик-теоретик, академик, создатель первых образцов ядерных и термоядерных зарядов, трижды Герой Социалистического Труда, лауреат Ленинской и четырех Государственных премий, работал в КБ-11 (ВНИИЭФ) в 1948-1965 гг.
К заседанию НТС ПГУ был подготовлен отчет С.П. Дьякова, Я.Б. Зельдовича и А.С. Компанейца «К вопросу об использовании внутриатомной энергии легких элементов», доклад на его основе представлен Я.Б. Зельдовичем.
Основы подхода в отчете С. П.Дьякова, Я.Б. Зельдовича и А.С. Компанейца — те же, что и в докладе И.И. Гуревича, Я.Б. Зельдовича, И.Я. Померанчука и Ю.Б. Харитона 1945 г. — выяснение условий, при которых может оказаться возможной ядерная детонация в среде из легких ядер, распространяющаяся в результате прохождения ударной волны в условиях отсутствия теплового равновесия между веществом и излучением. Рассматривалась возможность осуществления подобной детонации как в среде из дейтерия, так и в среде из дейтерида природного лития.
Как отметил Я.Б. Зельдович, сделать какие-либо определенные выводы в то время о практической возможности использования ядерной энергии легких элементов без дополнительных теоретических расчетов и экспериментальных исследований не представлялось возможным.
В решении НТС ПГУ от 3 ноября 1947 г. отмечена важность проводимой в Институте химической физики АН СССР работы по исследованию возможности использования энергии легких элементов для развития ядерной физики и, в случае положительного решения этой задачи, для практических целей. Указана необходимость продолжения этих работ, в первую очередь, изучения условий для осуществления реакций в легких элементах с использованием явления детонации при инициировании атомным взрывом.
23 апреля 1948 г. Л.П. Берия поручил Б.Л. Ванникову, И.В. Курчатову и Ю.Б. Харитону тщательно проанализировать материалы по системе Фукса—фон Неймана, переданные в 1948 г. Клаусом Фуксом, и подготовить предложения по организации необходимых исследований и работ в связи с получением этих новых материалов /6, с. 112/. Заключения по новым материалам Фукса были представлены Ю.Б. Харитоном, Б.Л. Ванниковым и И.В. Курчатовым 5 мая 1948 г.
Эти материалы дали новый импульс развитию исследований в СССР по проблеме водородной бомбы, которая получила индекс РДС-6. Постановлением Правительства от 10 июня 1948 г., в частности, предусматривалось:
определение предельного диаметра, необходимого для обеспечения горения чистого дейтерия или смеси дейтерия и трития;
анализ влияния различных количеств трития в смеси с дейтерием на скорость реакции;
исследование зажигания дейтерия от смеси дейтерия и трития;
исследование влияния энерговыделения первичного ядерного заряда на процесс зажигания;
исследование влияния физических свойств оболочки РДС-2 на процесс зажигания;
исследование особенностей действия излучения, нейтронов и заряженных частиц в процессе зажигания.
Эти работы КБ-11 должно было проводить с участием Физического института АН СССР. Для проведения этих работ в Физическом институте было предписано создать специальную теоретическую группу под руководством И.Е. Тамма. В состав группы вошли С.3. Беленький, А.Д. Сахаров, В.Л. Гинзбург и Ю.А. Романов. Для координации теоретических и расчетных работ и контроля за выполнением заданий было предписано создать при Лаборатории № 2 специальный закрытый семинар под руководством С.Л. Соболева ( Л.Д. Ландау, И.Г. Петровский, С.Л. Соболев, В.А. Фок, Я.Б. Зельдович, И.Е. Тамм, А.Н. Тихонов, Ю.Б. Харитон, К.И. Щёлкин).
Водородная бомба типа «Super» получила индекс РДС-6т. В работах по проекту РДС-6т участвовали многие замечательные ученые, а руководство физическими исследованиями в нем осуществлял выдающийся физик-теоретик Я.Б. Зельдович /6, с. 325, 327/.
К основополагающим фундаментальным проблемам, изучавшимся в этом проекте, относились, в частности: сечения и энергетика DD- и DT-реакций; вопросы максвеллизации ядер и электронов; нейтронно-ядерные взаимодействия в зажигающейся и горящей дейтериевой плазме;
радиационные процессы при нагреве и остывании плазмы в неравновесных условиях;
гидродинамика дейтериевой плазмы.
В начальный период работ по проекту экспериментальные данные по многим определяющим процессам были крайне скудны; вычислительные возможности отсутствовали. Как отмечали авторы итоговой работы по проекту РДС-6т в 1953 г., «совместное решение всех уравнений этой задачи, учитывающих одновременно все процессы, протекающие в системе, практически не выполнимо до развития машинной математической техники. Поэтому приходилось разделять решения трех основных задач: а) гидродинамики; б) кинетики ядерных реакций и диффузии быстрых частиц, возникающих в процессе реакций; в) излучения». Оценку состояния работ по РДС-6т хорошо характеризует решение НТС ПГУ в начале 1951 г., которое приведено в Приложении 3.
Проект РДС-6т был закрыт к 1954 г. /7, с.287/, когда было окончательно установлено отсутствие устойчивого режима горения подобных безымплозивных систем. Однако эти работы оказались исключительно полезными для понимания многих вопросов, связанных с зажиганием и горением термоядерной среды.
* * *26 октября 1950 г. вышел подробный отчет сотрудников Я.Б. Зельдовича, Н.А. Дмитриева, Г.М. Гандельмана, В.Ю. Гаврилова, «К теории инициатора для “Т”»/6, с. 324/, в котором рассматривались различные схемы инициирования термоядерного горючего (дейтерия) в «трубе»
«В настоящее время нам представляются мыслимыми следующие принципиальные схемы инициирования теплового взрыва в “Т”:
В этой схеме капсюль, содержащий смесь TD, богатую Т, при расширении внутреннего заряда объекта обжимается до весьма высокой плотности, и смесь TD воспламеняется за счет энергии, выделяющейся в ходе взрыва объекта. Появляющиеся в ходе горения смеси 14-МэВ-ные нейтроны выходят через оболочку (частично поглощаясь и замедляясь в ней), воспламеняют слой TD, содержащий малую концентрацию Т. Возникающие в ходе горения этого слоя ударная волна и быстрые частицы воспламеняют вплотную прилегающий к этому слою D. Предусмотренный в этом варианте слой инертного вещества, отделяющий капсюль 3 от слоя 4 (рис. 1), с одной стороны, обеспечивает плотность вещества капсюля и задерживает выход излучения, которое образуется при сгорании центрального заряда, в слой 4. С другой стороны, в такой конструкции неизбежны весьма значительные потери п с энергией в 14 МэВ из-за замедления и поглощения их в слое инертного вещества и неизбежного уменьшения телесного угла, под которым капсюль виден из какой-либо точки слоя 4.
Перейдем теперь ко второй мыслимой конструкции (рис. 2).