Астрономия. Популярные лекции - Владимир Георгиевич Сурдин
Шрифт:
Интервал:
Закладка:
Рис. 10.17. Слева: Солнце 9 апреля 2013 г. в линии восьмикратно ионизованного железа Fe IX (17,1 нм). Справа: Солнце 30 марта 2010 г. в линиях He II (30,4 нм) и высокоионизованного железа. Фото: Solar Dynamics Observatory, NASA.
И совсем фантастическим Солнце выглядит в отдельных линиях ультрафиолетового диапазона, но такие портреты получаются только со спутников: до поверхности Земли излучение длиной волны менее 300 нм не доходит. В белом свете Солнце кажется спокойным, но в линии излучения ионизованного железа та же самая поверхность выглядит совсем по-другому. На синтетическом портрете, сложенном из нескольких спектральных линий, многое можно увидеть одновременно: тут и активные области, и выбросы-протуберанцы, и потоки газа в солнечной короне, и отдельные яркие точки, которых раньше не замечали вообще (рис. 10.17). Такие снимки рассказывают нам о том, как функционирует эта звезда на поверхности.
Особенно интересно получается, если делать снимки непрерывно и потом складывать из отдельных кадров «мувики». Так, один из старейших орбитальных телескопов, SOHO, уже 20 лет летает в космосе и несколько раз в час фотографирует Солнце через фильтр, пропускающий линии излучения водорода. Просматривая серии таких снимков, мы видим вспышки и протуберанцы в развитии, а также вращение звезды. Солнце вращается не особенно быстро: примерно за 27 суток оно делает один оборот вокруг своей оси. Но есть звезды, которые оборачиваются за несколько часов. Причина медленного вращения Солнца в том, что в процессе формирования нашей Солнечной системы планеты «отобрали» у своей звезды момент импульса, так что полный момент Солнечной системы в основном принадлежит планетам и складывается из их орбитального движения, прежде всего движения массивного Юпитера. Поэтому если мы видим, что какая-то звезда быстро вращается, то планет у нее, скорее всего, нет.
Рис. 10.18. Структура магнитного поля Солнца в области солнечного пятна детально «обрисована» потоками ионизованного газа.
Детальный снимок окрестности солнечного пятна, сделанный в области одной спектральной линии ионизованного железа, хорошо показывает структуру магнитного поля (рис. 10.18). Насыпанные на картонку железные опилки при поднесении снизу магнита выстраиваются вдоль силовых линий магнитного поля — точно так же ориентируются и потоки плазмы вокруг пятен, представляющих собой магнитные полюсы. Таким образом, мы можем непосредственно изучать магнитные поля и поведение газа в этих магнитных полях. Поля там неслабые, порядка тысячи гауссов. В принципе такую напряженность можно получить и на Земле, но это нелегко. А тут у нас, можно сказать, бесплатная физическая лаборатория, в которой можно наблюдать и изучать магнитную газодинамику.
Рис. 10.19. Выброс протуберанца 3 февраля 2016 г. Фото: NASA.
Как правило, протуберанцы спокойные. Они приподнимаются магнитным полем, еще немного свет на них давит снизу, т. е. получается магнитная ловушка, в которой висит плазменное облако; оно остывает — и тогда мы его видим. Иногда газ все-таки покидает поверхность Солнца, и его потоки устремляются из фотосферы в более высокие слои атмосферы — хромосферу и корону. Корону мы видим редко, потому что она хоть и очень горячая, более миллиона градусов, но очень разрежена и поэтому света дает мало. Только во время солнечного затмения, когда солнечный диск закрыт Луной, мы замечаем, что у Солнца атмосфера очень протяженная и динамично меняющаяся: потоки газа вырываются из нее довольно интенсивно. На хороших снимках солнечного затмения мы прослеживаем корону очень далеко, и она каждый раз разная, потому что меняется активность в разных областях Солнца.
Рис. 10.20. Солнечная корона, сфотографированная во время полных солнечных затмений 2015 г. (слева) и 2012 г. Фото: Милослав Друкмюллер (Miloslav Druckmüller).
А теперь сопоставьте известные вам данные: поверхность Солнца нагрета всего до 5–6 тысяч градусов, но отходим дальше в холодный космос — и вдруг миллионы градусов. Странная картина, правда? Вроде бы тепло течет от нагревателя к холодильнику, а поверхность Солнца — это и есть холодильник по сравнению с ядром. Что приносит туда энергию, что нагревает корону?
Рис. 10.21. В фотосфере Солнца постоянно происходят «нановспышки» с относительно небольшим выделением энергии, около 240 Мт ТНТ. Они существенно подогревают солнечную корону.
До сих пор выдвигали разные гипотезы для объяснения необычно высокой температуры газа в короне — и звуковые волны, и магнитные. Лишь недавно астрофизики поняли, откуда у короны такая высокая температура: причиной являются микровспышки на поверхности Солнца, малюсенькие яркие точки в области контакта между всплывающими в виде гранул потоками газа (рис. 10.21). Но «микро-» такая вспышка лишь в масштабе всего Солнца, а абсолютная величина энергии каждой вспышки — порядка сотни мегатонн тринитротолуола (ТНТ). Для сравнения: энергия взрыва самой мощной бомбы за всю историю человечества (водородной) — 50 мегатонн (это была наша бомба, отечественная). А тут — сотни мегатонн, тем не менее мы их называем «нановспышками», потому что на Солнце они почти не заметны.
Рис. 10.22. Протуберанцы на Солнце. Фото: NASA, 2010 г.
Рис. 10.23. Корональный выброс массы на Солнце 8 января 2002 г. Фото космической обсерватории SOHO (NASA, ESA).
Вспышка выглядит так: магнитные поля сжимают плазму, от этого она за короткое время сильно разогревается. По сути, происходит взрыв магнитной бомбы, на поверхности Солнца возникает возмущение, от которого расходятся тяжелые (иногда физики говорят — гравитационные) волны, подобные волнам на поверхности воды. Вспышка как бы стукнула по поверхности — и пошла волна, типичное цунами. В каждой такой вспышке выделяется достаточно энергии, чтобы нагреть большой кусок плазмы и выбросить его с поверхности. Не обязательно насовсем: он может взлететь и потом упасть — ведь от Солнца оторваться нелегко (рис. 10.22). Бывает, что облако выбрасывается со второй космической скоростью —