Эволюция человека. Книга I. Обезьяны, кости и гены - Александр Владимирович Марков
Шрифт:
Интервал:
Закладка:
Ранее было показано, что несколько генов ЭРВ человека, а именно гены белков вирусной оболочки, экспрессируются в клетках некоторых тканей, в том числе в плаценте. В отличие от других фрагментов ЭРВ эти гены не разрушаются под грузом мутаций. Это значит, что они находятся под действием очищающего отбора: мутации, портящие эти гены, снижают приспособленность (речь идет, конечно, о приспособленности людей, а не вирусов) и потому отсеиваются отбором. Для трех человеческих генов вирусного происхождения (syncytin 1, syncytin 2, EnvPb1) недавно была экспериментально показана способность инициировать слияние клеток. Белки вирусной оболочки помимо прочего обеспечивают проникновение вируса в клетку. Способность этих белков нарушать целостность клеточных мембран может в некоторых случаях оказаться полезной организму – например, в ходе развития наружного слоя плаценты (синцитиотрофобласта), который образуется путем слияния множества клеток в единое многоядерное целое.
Датские генетики обнаружили и изучили еще один яркий случай «одомашнивания» двух вирусных генов, которые изначально кодировали белки вирусной оболочки. Открытие было сделано в ходе целенаправленного поиска неиспорченных вирусных генов в геноме человека. Исследователи нашли два очень похожих друг на друга ретровирусных гена (их назвали ENVV1 и ENVV2), которые, по всей видимости, находятся в рабочем состоянии. Это типичные гены белков оболочки ретровируса. Каждый из них входит в состав своего ЭРВ, причем все остальные части этих ЭРВ давно выведены из строя многочисленными мутациями и вставками мобильных генетических элементов – транспозонов.
Авторы нашли гены ENVV1 и ENVV2 и в геномах других приматов: у человекообразных (шимпанзе, орангутана), других обезьян Старого Света (макаки-резуса, зеленой мартышки), а также у обезьян Нового Света – мармозетки и беличьей обезьяны, или саймири. Однако у наших более отдаленных родственников – лемуров – этих генов нет. Сопоставив данные по нуклеотидным последовательностям генов ENVV1 и ENVV2 у разных обезьян, исследователи смогли реконструировать эволюционную историю этих генов.
Исходный ретровирус проник в геном наших предков и «прижился» там между 77 и 43 млн лет назад: уже после того, как разделились линии обезьян и лемуров, но до того, как разошлись обезьяны Старого и Нового Света. Новый ЭРВ вскоре подвергся двум последовательным дупликациям, и в результате получилось три одинаковых ЭРВ, расположенных по соседству на одной хромосоме. Все участки этих ЭРВ, кроме генов белков оболочки (ENVV1, ENVV2 и ENVV3), стали постепенно дегенерировать. Ген ENVV2 приобрел в результате мутаций какое-то полезное для хозяина свойство и стал бережно сохраняться отбором. Об этом свидетельствует, в частности, резкое преобладание незначимых (синонимичных) нуклеотидных замен над значимыми в этом гене у всех обезьян. Гены ENVV1 и ENVV3, по-видимому, тоже приобрели полезные функции (возможно, это произошло еще до утроения исходного ЭРВ), но эти гены оказались не столь незаменимыми, как ENVV2. Поэтому в некоторых эволюционных линиях обезьян эти гены были либо утрачены, либо выведены мутациями из строя. В частности, общий предок человека и шимпанзе потерял ген ENVV3. У их ближайшего родственника орангутана этот ген есть, хотя и в нерабочем состоянии. Ген ENVV1 у орангутана есть, но не работает; у человека и шимпанзе он в полном порядке. Авторы также выяснили, что между генами ENVV1 и ENVV2 в разных эволюционных линиях неоднократно происходил обмен участками. В результате ген ENVV2 мог передать гену ENVV1 свои полезные свойства – полностью или частично.
Интересно, что у обоих видов, у которых это удалось проверить, а именно у человека и павиана, гены ENVV1 и ENVV2 работают в плаценте. Установить экспериментально, какую именно функцию они там выполняют, технически очень сложно, и авторы пока этого не сделали. Но на основе анализа структуры белков, кодируемых этими генами, можно заключить, что возможных функций три:
1. управление слиянием клеток в ходе формирования наружного слоя плаценты – синцитиотрофобласта (об этом способе применения вирусных белков говорилось выше);
2. защита эмбриона от иммунной системы матери (у обоих белков есть участок, обладающий иммуносупрессивным действием – это вполне понятно, если вспомнить, что изначально они входили в состав вирусной оболочки);
3. защита эмбриона от «диких» ретровирусов. У ENVV1 и ENVV2 сохранились участки, связывающиеся с теми поверхностными белками клетки, к которым прикрепляются ретровирусы, чтобы проникнуть в клетку. Если к такому поверхностному белку уже прицепился белок ENVV1 или ENVV2, дикий ретровирус не может использовать его для проникновения в клетку.
Таким образом, генетические модификации, которым ретровирусы подвергали наших предков, впоследствии иногда оказывались весьма полезными.
Новые гены?
Активность генов может меняться в ходе эволюции не только путем изменений сайтов связывания ТФ, работы самих ТФ или регуляторных РНК, но и в результате дупликации генов. При прочих равных два одинаковых гена произведут больше продукта (то есть информационной РНК, которая затем «транслируется» в белок), чем один.
Дупликация генов, так же как и их потеря, – весьма обычное явление в эволюции. В человеческой эволюционной линии (после ее обособления) произошло как минимум 134 генных дупликации. Удваивались не только гены, но и все то, что находится между ними – всевозможные некодирующие участки ДНК, функция которых в большинстве случаев неизвестна. Иногда происходило удвоение отдельных фрагментов генов. Некоторые гены дуплицируются многократно. Например, ген MGC8902 у человека присутствует в 49 копиях (у шимпанзе десять, у макак четыре). Ген к тому же несет следы действия положительного отбора и активно работает в клетках мозга.
Удвоение генов часто становится первым шагом к возникновению принципиально новых генов. Одна из двух копий гена, оказавшись в ином генетическом «контексте» (окружении), может начать по-другому регулироваться, работать в других тканях или на иных этапах развития организма и в конце концов может приобрести новую функцию и структуру. Но это долгий путь. В какой степени он был реализован в эволюции человека, пока неясно, да и определить, в какой момент ген перестает быть просто дубликатом старого гена и начинает быть новым геном, не легче, чем провести грань между нечеловеческими гоминидами и людьми.
Новые гены могут возникать и быстрее – путем перетасовки частей имеющихся генов. Один такой случай зарегистрирован у человека. Ген SIGLEC-11 дуплицировался примерно 15 млн лет назад, еще до расхождения линий человека и шимпанзе. Его вторая копия в какой-то момент выключилась, перестала работать, и в ней накопились мутации. У шимпанзе эта отключенная копия так и осталась невостребованной, а у человека ее фрагмент заместил собой часть исходного гена SIGLEC-11. В результате получился почти совсем новый, чисто человеческий ген. Он кодирует рецепторный белок, относящийся к надсемейству иммуноглобулинов и присутствующий на мембранах лимфоцитов и некоторых клеток мозга. По-видимому, он выполняет нейропротекторную