Открытие Вселенной - прошлое, настоящее, будущее - Александр Потупа
Шрифт:
Интервал:
Закладка:
На этом не исчерпывается обнаруженная в 60-е годы и позднее звездная экзотика. О самой интересной из них — черных дырах — мы поговорим во II части. Там же удастся обсудить и общую картину звездной эволюции, где обычные и экзотические звезды обретают свои естественные места.
Открытие Галактики
Шаги по открытию Галактики[89] и Солнечной системы в чем-то очень схожи. Млечный Путь, один из первых ориентиров на звездном небе, выделялся с древнейших времен. Однако его астрономическая интерпретация возникла сравнительно поздно. Лишь систематический интерес астрономов к звездам на рубеже 18–19 веков позволил нащупать некоторые закономерности в группировке далеких светил. Появилась своеобразная гелиоцентрическая модель Гершеля-Каптейна, где Солнце считалось случайным центром огромного звездного скопления. При всем том Галактику еще не рассматривали как особый структурный элемент Вселенной.
Джон Гершель впервые и не слишком настойчиво высказал идею, что Магеллановы Облака, наблюдаемые в южном полушарии, представляют собой отдельные очень далекие звездные системы вроде Млечного Пути, но его гипотеза не произвела особого впечатления.
Прорыв наметился внезапно в связи с исследованием объектов, которые долгое время не привлекали внимания, — переменных звезд. В древности их как бы и не замечали, во всяком случае, неизвестны исследования даже тех переменных звезд, чей период нетрудно определить невооруженным глазом. Первый шаг в этой области сделал в 1596 году немецкий астроном Давид Фабрициус (1564–1617), описавший переменную Миру Кита. Устойчивый интерес к переменным возник лишь в период открытия двойных звезд.
Переменные звезды демонстрируют весьма различное поведение. Некоторые из них очень резко меняют блеск. В этом случае разумно считать, что мы имеем дело с планетообразной системой двух звезд, одна из которых периодически затмевает другую. Это так называемые затменные переменные звезды. Но существует и иная ситуация, когда блеск звезды меняется плавно, и такое изменение нельзя объяснить прохождением какого-либо тела через луч зрения. Остается единственный вариант — предположить, что из-за каких-то физических процессов меняется сама светимость звезды, то есть количество энергии, которое она излучает. Среди таких звезд, в свою очередь, выделяются две подгруппы — долгопериодические и короткопериодические. Так называемые цефеиды с периодом от нескольких суток до нескольких десятков суток и особым характером колебаний (похожим на колебания Дельты Цефея) привлекли внимание американского астронома из Гарвардской обсерватории Генриетты Суан Ливитт (1868–1921). В 1908 году, изучая фотографии Малого Магелланова Облака, полученные в Перуанском филиале, Ливитт обнаружила довольно четкую зависимость между яркостью цефеид и их периодом — чем ярче звезда, тем больше период колебаний блеска. Это обстоятельство окончательно выяснилось к 1912 году, и именно оно открыло путь к определению размеров Галактики и межгалактических расстояний. Поэтому цефеиды справедливо стали называть маяками космоса.
Удачный выбор объекта исследований — ведь расстояния между самими цефеидами заведомо много меньше расстояния до Малого Магелланова Облака позволил выделить закономерность «яркость-период» в чистом виде, и теперь можно было использовать эту закономерность для изучения других элементов звездного неба.
Этим и воспользовался работавший тогда на 60-дюймовом рефракторе обсерватории Маунт-Вилсон американский астроном Харлоу Шепли (1885–1972). Диссертация по затменным звездам, написанная им в начале научной карьеры, позволила ему сопоставить свои результаты с данными по цефеидам и доказать, что последние являются пульсирующими звездами. В 1915–1917 годах Шепли исследовал цефеиды в 69 звездных скоплениях и попытался определить расстояния до них. Тут-то и пригодились результаты Ливитт. Измерив периоды цефеид, Шепли вычислил их относительную светимость и далее, сопоставляя вычисленные светимости с наблюдаемой яркостью, нашел пропорцию в расстояниях до шаровых скоплений. Сразу же нашлось объяснение загадочной концентрации шаровых скоплений в направлении созвездия Стрельца, обнаруженной еще Вильямом Гершелем. Оказалось, что эти скопления образуют огромный сферический хоровод вокруг некоторого общего центра тяжести. Усредняя результаты допплеровских измерений по движению цефеид, Шепли определил абсолютные расстояния до шаровых скоплений. Картина нашего положения во Вселенной резко изменилась.
К 1919 году Шепли окончательно понял, что сферический хоровод шаровых скоплений позволяет определить истинный центр Млечного Пути, который расположен в десятках тысяч световых лет от Солнца. Наше светило оказалось весьма заурядной периферической звездой, лишившись места в центре мира подобно тому, как это произошло с Землей в коперниковские времена. Гелиоцентрическая модель Гершеля — Каптейна навсегда ушла в историю.
К сожалению, Шепли, правильно определивший форму Галактики, переоценил ее размеры и пришел к выводу, что спиральные туманности тоже являются ее элементами. Из-за этого Галактика еще некоторое время — совсем недолго играла роль особого элемента Вселенной.
В 1921 году шведский астроном Бертиль Линдблад (1895–1965), впоследствии директор Стокгольмской обсерватории и президент Международного астрономического союза, высказал гипотезу о вращении Галактики. Эта гипотеза подтвердилась через 6 лет в результате тщательного анализа движения звезд, предпринятого голландским астрономом Яном Оортом. Оорт выделил в Галактике сферическую и плоскую подсистемы звезд и существенно уточнил ее размеры. Оценка скорости движения Солнца вокруг галактического центра и распределения звезд в Галактике позволила оценить и ее массу. Оказалось, что Галактика содержит порядка 100 миллиардов (1011) звезд в среднем той же массы, что и Солнце. Последующие уточнения этой картины привели к доказательству гипотезы того же Линдблада о спиральном строении плоской составляющей. Так постепенно сформировалась современная модель, на некоторых особенностях которой мы еще остановимся во II части книги.
А сейчас перейдем к рассказу о главных событиях астрономии 20-х годов, давших науке совершенно новую концепцию Вселенной[90].
Открытие вселенной
К первым десятилетиям 20 века сложилась, в общем-то, довольно простая картина строения Вселенной. Она превосходно отражена в иерархической теории шведского астронома Карла Вильгельма Шарлье (1862–1934), построенной им в двух публикациях в 1908 и 1922 годах. Занимаясь много лет звездной статистикой, Шарлье обратил внимание на тенденцию звезд образовывать скопления различного масштаба. Отсюда он и вывел гипотезу о Вселенной как бесконечной иерархии все более крупных структур — звезд, звездных скоплений, скопление скоплений и т. д., которые открываются по мере совершенствования телескопов. Вскоре эти представления были распространены на галактики и галактические скопления.
Между тем, когда в 1922 году выходила в свет статья Шарлье под названием «Как может быть построен бесконечный мир», астрономия уже вплотную подошла к созданию нового взгляда на устройство этого мира.
Возникновение современной модели Вселенной обязано двум внешне независимым подходам. Теоретически она была предсказана в результате бурного развития новой теории гравитации в работах Альберта Эйнштейна (1879–1955). В 1922–1924 годах советский математик Александр Александрович Фридман (1888–1925) опубликовал две статьи, где были получены именно те решения уравнений эйнштейновской общей теории относительности, которые до сих пор составляют основу космологических взглядов. Фридмановская Вселенная должна была расширяться или сжиматься как целое, никогда не оставаясь застывшей, причем в модели хорошо было видно, что в некоторые эпохи материя находилась в состояниях, никак не похожих на то, которое наблюдается теперь.
Однако роль этих работ оставалась неясной вплоть до рубежа 20-30-х годов, когда появились новые экспериментальные данные, открывающие новую перспективу в астрономии.
Эти данные вытекали в первую очередь из результатов американского астронома Эдвина Пауэлла Хаббла (1889–1953), масштаб деятельности которого ставит его в один ряд с Гиппархом, Тихо Браге и Гершелем — каждый из них олицетворяет целую эпоху древнейшей науки.
Впрочем, начало космологической революции было положено героическими усилиями руководителей обсерватории Маунт-Вилсон, которым удалось в 1917 году продолжить славу своего крупнейшего астрономического учреждения установкой самого мощного в то время телескопа со 100-дюймовым (2,5 метра!) зеркалом, специально ориентированного на разрешение туманностей.