Категории
Самые читаемые
RUSBOOK.SU » Научные и научно-популярные книги » Техническая литература » Большая энциклопедия техники - Коллектив авторов

Большая энциклопедия техники - Коллектив авторов

Читать онлайн Большая энциклопедия техники - Коллектив авторов

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 405 406 407 408 409 410 411 412 413 ... 470
Перейти на страницу:

Протекание тока через кристалл в униполярных транзисторах обусловлено носителями заряда лишь одного знака – дырками или электронами.

В биполярных транзисторах ток через кристалл появляется в результате движения носителей заряда обоих знаков. Такой транзистор представляет собой монокристаллическую полупроводниковую пластину, в которой при помощи специальных технологических приемов есть 3 области с различной проводимостью: электронной (n) и дырочной (р). В зависимости от порядка их чередования выделяют транзисторы n-р-n-типа и р-n-р-типа. Средняя область шириной порядка нескольких микрометров, носит название базы, две другие – коллектора и эмиттера. База отделена от коллектора и эмиттера электронно-дырочными переходами: коллекторным (КП) и эмиттерным (ЭП). От базы, коллектора и эмиттера сделаны металлические выводы.

В зависимости от механизма переноса неосновных носителей заряда через базу различают бездрейфовые транзисторы, в базе которых ускоряющее электрическое поле не присутствует и заряды переносятся от эмиттера к коллектору благодаря диффузии, и дрейфовые транзисторы, в которых действуют сразу два механизма переноса зарядов в базе: дрейф в электрическом поле и диффузия. По областям использования и электрическим характеристикам различают транзисторы маломощные, малошумящие (применяются во входных цепях радиоэлектронных усилительных приборов), мощные генераторные (применяются в радиопередающих устройствах), импульсные (применяются в импульсных электронных системах), ключевые (применяются в качестве электронных ключей в системах автоматического регулирования), специальные, фототранзисторы (применяются в устройствах, которые преобразуют световые сигналы в электрические с одновременным их усилением). Различают также низкочастотные транзисторы, предназначенные в основном для работы в ультразвуковом и звуковом диапазонах частот, сверхвысокочастотные свыше 300 МГц и высокочастотные до 300 МГц.

В качестве полупроводниковых материалов для производства транзисторов применяют преимущественно кремний и германий. В соответствии с технологией получения в кристалле зон с различными типами проводимости транзисторы подразделяются на сплавные, сплавно-диффузионные, диффузионные, конверсионные, эпитаксиальные, мезатранзисторы, планарные и планарно-эпитаксиальные. По конструктивному изготовлению транзисторы делятся на транзисторы в герметичных пластмассовых, металлокерамических или металлостеклянных корпусах и бескорпусные; бескорпусные обладают временной защитой кристаллов от воздействия внешней среды в виде тонкого слоя лака, смолы, легкоплавкого стекла и герметизируются вместе с устройством, в котором их изготавливают. Широкое распространение получили планарно-эпитаксиальные кремниевые и планарные транзисторы.

С изобретением транзисторов наступил период минимизации размеров радиоэлектронной аппаратуры на основе достижений быстро развивающейся полупроводниковой электроники. В сравнении с радиоэлектронной аппаратурой первого поколения на электронных лампах подобная по назначению радиоэлектронная аппаратура второго поколения, на базе полупроводниковых приборов и транзисторах, обладает в десятки и сотни раз меньшими массой и габаритами, большей надежностью и потребляет гораздо меньшую электрическую мощность. Размеры полупроводникового элемента современного транзистора довольно малы. Надежность работы транзисторов характеризуется значениями ~ 105 ч. Транзисторы могут работать при низких напряжениях источников питания, потребляя в этом случае токи в несколько микроампер. Мощные транзисторы работают при напряжениях, достигающих 10—30 В, и токах до нескольких десятков ампер, отдавая мощность до 100 Вт.

Верхний предел диапазона частот, которые усиливаются транзистором, достигает 10 ГГц, что соответствует длине волны электромагнитных колебаний, равной 3 см. В области низких частот по шумовым характеристикам транзисторы успешно конкурируют с малошумящими электрометрическими лампами. В области частот до 1 ГГц транзисторы достигают значения коэффициента шума не более 1,5—3,0 дБ. На более высоких частотах коэффициент шума растет, достигая на частотах 6—10 ГГц 6—10 дБ.

Транзистор является главным элементом современных микроэлектронных приборов. Существуют устройства, получившие название интегральных микросхем, сделанные на одном кристалле полупроводника площадью 30—35 мм2, с числом электронных устройств до нескольких десятков тысяч. Такие транзисторы являются основой радиоэлектронной аппаратуры третьего поколения. Примером подобной аппаратуры могут служить наручные электронные часы, которые содержат от 600 до 1500 транзисторов, и карманные электронные вычислительные устройства. Переход к применению ИС определил новое направление в производстве и конструировании надежной и малогабаритной радиоэлектронной аппаратуры, которая получила название микроэлектроники. Достоинства транзисторов в сочетании с достижениями технологии их изготовления дают возможность создавать ЭВМ, которые насчитывают до нескольких сотен тысяч элементов, устанавливать сложные электронные устройства на борту космических летательных аппаратов, производить малогабаритную радиоэлектронную аппаратуру для применения в быту, в медицине, различных областях промышленности и т. д. Наряду с достоинствами транзисторы имеют ряд недостатков, главным образом – ограниченный диапазон рабочих температур. К недостаткам транзисторов относятся также с изменением рабочей температуры значительные изменения их параметров и довольно сильная чувствительность к ионизирующим излучениям.

Трохотрон

Трохотрон – многоэлектродный электронно-лучевой прибор, имеющий ленточный трохоидальный электронный пучок, применяемый в основном в качестве коммутатора. Электронный луч образуется под воздействием взаимно перпендикулярных полей: изменяемого электрического, которое создается электродами прибора и постоянного магнитного, создающегося внешним магнитом. Луч проходит главным образом по эквипотенциальной поверхности, имеющей потенциал, близкий к потенциалу катода. Коммутация луча производится в результате управляемого перемещения эквипотенциальной поверхности с помощью изменения потенциала специальных электродов трохотрона, имеющих название лопатки.

В самом распространенном линейном десятикратном трохотроне на экран подается постоянный отрицательный потенциал, равный 50—100 В, а на анод и каждую пластину подается постоянный положительный потенциал, достигающий 100 В.

Трохотроны главных типов различаются в основном формой электродов, образующих ячейку, и расположением ячеек. В двумерном трохотроне электронный пучок управляется двумя отдельными группами ячеек, в бинарном – лопатки различной длины конкретным образом объединены в группы, в кольцевом – ячейки располагаются по окружности, в центре которой размещен цилиндрический катод. Трохотроны обеспечивают гибкое управление токами и используются в различных электрических цепях, как правило, импульсных, для измерения временных интервалов, коммутации цепей, счета импульсов, а также в качестве электронной линии задержки и т. д.

Туннельный диод

Туннельный диод – двухэлектродное электронное устройство на базе полупроводникового кристалла, в котором находится очень узкий потенциальный барьер, препятствующий движению электронов; является разновидностью полупроводникового диода. Вид вольтамперной характеристики (ВАХ) туннельного диода определяется, как правило, квантовомеханическим процессом туннелирования, из-за которого электроны проникают через барьер из одной разрешенной области энергии в другую. Изобретение туннельного диода впервые доказало на практике существование процессов туннелирования в твердых телах. Создание такого диода стало осуществимо в результате прогресса в полупроводниковой технологии, который позволил создавать полупроводниковые материалы со строго заданными электронными свойствами. Путем легирования полупроводника довольно большим количеством конкретных примесей удалось получить очень высокую плотность электронов и дырок в р- и n- областях, не нарушив при этом резкий переход от одной области к другой. В связи с малой шириной перехода (50—150 А) и весьма высокой концентрацией в кристалле легирующей примеси, в электрическом токе, протекающем через туннельный диод, преобладают туннелирующие электроны.

Первый туннельный диод был произведен в 1957 г. из германия; но вскоре после этого были найдены и другие полупроводниковые материалы, из которых можно получить туннельные диоды: Si, InSb, GaAs, InAs, PbTe, GaSb, SiC и др. В силу того что туннельные диоды в определенном интервале напряжений смещения обладают отрицательным дифференциальным сопротивлением и имеют очень малую инерционность, их используют в качестве активных элементов в высокочастотных усилителях электрических колебаний, переключающих устройствах и генераторах.

1 ... 405 406 407 408 409 410 411 412 413 ... 470
Перейти на страницу:
На этой странице вы можете бесплатно скачать Большая энциклопедия техники - Коллектив авторов торрент бесплатно.
Комментарии
Открыть боковую панель
Комментарии
Вася
Вася 24.11.2024 - 19:04
Прекрасное описание анального секса
Сергій
Сергій 25.01.2024 - 17:17
"Убийство миссис Спэнлоу" от Агаты Кристи – это великолепный детектив, который завораживает с первой страницы и держит в напряжении до последнего момента. Кристи, как всегда, мастерски строит