Как тестируют в Google - Уиттакер .
Шрифт:
Интервал:
Закладка:
Иногда тест-план нежизнеспособен потому, что содержит слишком много или, наоборот, слишком мало подробностей. Или он способствовал началу работы, а вот процессу — уже нет. И снова вопрос знатокам: стоило ли создавать документ с ограниченной или постоянно уменьшающейся ценностью?
Некоторые тест-планы содержат настолько очевидную информацию, что ее и документировать-то не стоило. Мы просто зря тратим время. Давайте посмотрим правде в глаза: у нас проблема с тест-планами.
Чтобы справиться с этим, я придумал для своей команды простое задание: написать тест-план за десять минут. Если уж он и имеет какую-то ценность, то давайте доберемся до нее как можно скорее.
Когда у вас есть всего десять минут для решения задачи, каждая секунда становится значимой. В этом моя основная идея: ограничение во времени заставляет отсекать при планировании всю шелуху и концентрироваться только на важных моментах. Делайте только то, что абсолютно необходимо, оставьте подробности исполнителям тестов. Я хотел покончить с порочной практикой написания нежизнеспособных тест-планов, и это упражнение показалось мне верным.
Однако я ничего этого я не говорил участникам эксперимента. Я просто сказал: «Вот приложение, составьте тест-план не более чем за десять минут». Имейте в виду, что эти люди получали зарплату за то, что они выполняли мои задачи. И все же я предполагал, что они испытывали ко мне определенное уважение, а следовательно, знали, что я не поручу им невыполнимую задачу.
Они могли потратить некоторое время на знакомство с приложением, но, так как речь шла о приложениях, которые они используют каждую неделю (Google Docs, App Engine, Talk Video и т.д.), я дал им совсем немного времени на это.
Во всех случаях команды изобретали методы, схожие с методами ACC-анализа. Они оформляли решения в форме таблиц и списков, не используя большие объемы текста. То есть предложениям — да, абзацам текста — нет. Они не тратили время на форматирование текста, не вдавались в излишние объяснения. У всех тест-планов было одно общее — команды документировали возможности. Они признали, что это было лучшим решением, куда потратить весьма ограниченное время.
О’кей, ни одна команда не завершила тест-план вовремя. Тем не менее они успели за десять минут пройтись по атрибутам и компонентам и начали вычленять возможности исследуемого продукта. К концу дополнительных двадцати минут большинство моих подопытных записали довольно большой набор возможностей, который мог бы служить отличной отправной точкой при создании тест-кейсов и пользовательских историй.
Мне кажется, что эксперимент удался. Я выделил им десять минут, хотя ориентировался на час. В итоге за полчаса было выполнено 80% работы. Разве этого недостаточно? Мы точно знаем, что не будем тестировать все, ну и зачем нам все документировать? Мы отлично знаем, что в ходе тестирования многие вещи (графики, требования, архитектура) будут изменяться. Настаивать на скрупулезной точности планирования, когда завершенность вовсе не требуется, не имеет смысла.
Восемьдесят процентов работы выполнено за тридцать минут или даже меньше. Вот это я называю десятиминутным тест-планом!
Напоследок о рисках
Google Test Analytics берет за основу описанные выше критерии оценки рисков («очень редко», «редко», «иногда», «часто»). Мы специально не хотим превращать анализ рисков в сложную задачу, иначе она не будет выполнена. Нас не интересуют точные математические подробности, потому что цифры мало что значат. Достаточно знать, что «А» рискованнее «Б», не обращая внимания на точное значение рисков. Простое знание, какая возможность рискованнее другой, позволит тест-менеджеру более эффективно распределять работу тестировщиков. А такие люди, как Патрик Коупленд, смогут легко решать, сколько тестировщиков нужно назначить в каждую команду разработки. Понимание рисков приносит пользу на уровне всей компании.
Анализ рисков — это самостоятельная научная область, уважаемая во многих отраслях. Мы используем упрощенную версию методологии, но это не мешает нам интересоваться новыми исследованиями, чтобы улучшить свой подход к тестированию. Если вы хотите узнать больше об анализе рисков, то начните со статьи «Управление рисками» в Википедии.
GTA помогает обозначить риски, а тестирование помогает их снизить. Тестировщик служит посредником в этом процессе. Он может выполнить внутренние тесты по некоторым наиболее рискованным направлениям или поставить задачу разработчикам и разработчикам в тестировании, чтобы они добавили регрессионные тесты. В его арсенале есть и другие инструменты: исследовательское тестирование, привлечение внутренних и бета-пользователей и силы внешнего сообщества.
В ответственности тестировщика знать все подверженные рискам области. Он должен стараться снизить риски любыми способами, которые ему подвластны. Вот несколько рекомендаций, которые мы считаем полезными в борьбе с рисками.
1. Для самых рискованных возможностей и пар «атрибут/компонент», отмеченных красным, напишите набор пользовательских историй, сценариев использования или руководство по тестированию. В Google ответственность за наиболее рискованные возможности лежит на тестировщике. Он может координировать свою работу с коллегами, использовать разные инструменты, но личная ответственность все равно на нем.
2. Внимательно изучите все то, что делалось по тестированию разработчиками и разработчиками в тестировании до вас. Как результаты повлияли на риски, выявленные с помощью GTA? Хорошо ли это тестирование было организовано с точки зрения управления рисками? Стоит ли добавить новые тесты? Тестировщику может понадобиться дописать эти тесты самому или обратиться к разработчикам. В конечном счете важно, чтобы тесты были написаны, а не кто именно их напишет.
3. Проанализируйте баги, обнаруженные у каждой пары атрибут/компонент высокого риска, и убедитесь в том, что соответствующие регрессионные тесты написаны для каждого из них. Баги имеют свойство возвращаться при изменении кода.
4. Будьте внимательнее к областям высокого риска — поинтересуйтесь механизмами восстановления и отката. Учтите возможное негативное влияние на пользователя, когда он столкнется с наихудшим сценарием. Обсудите такие ситуации с другими инженерами, проверьте реалистичность этих сценариев. К тестировщику, который часто кричит: «Волк!», вскоре перестанут прислушиваться. Громкие предупреждения о вероятных опасностях допустимы только в отношении сценариев с высоким риском, которые к тому же признаны реалистичными и уже были покрыты тестами.
5. Вовлекайте в работу как можно больше людей, заинтересованных в успешности проекта. Внутренних пользователей следует тормошить на тему обратной связи, иначе они будут просто использовать систему, игнорируя те или иные ошибки. Просите их проводить конкретные эксперименты, задавайте им вопросы типа «А как это работает на вашей машине?» или «Как бы вы использовали такую фичу?». Сотрудники Google много участвуют в тестировании, и их нужно активно направлять именно тестировать, а не просто пользоваться продуктами.
6. Если ни один из механизмов не работает, а подверженный риску компонент так и недотестирован, да еще и постоянно падает, постарайтесь добиться удаления элемента. Поздравляем! Вам выпал шанс объяснить руководству концепцию анализа рисков и подчеркнуть важность тестировщиков на проекте.
Пользовательские сценарии
Джейсон Арбон
Пользовательские истории описывают реальные или смоделированные способы, которыми пользователи используют приложение. Они описывают, чего хотят пользователи, смотрят на продукт их глазами, не учитывая архитектуру приложения и детали реализации.
Истории могут быть связаны с возможностями, но лишь поверхностно, поскольку все-таки подчинены действиям пользователя. Пользователю что-то нужно, а история описывает, как он использует приложение, чтобы это получить. Истории намеренно описаны в общем виде, без конкретных шагов, без жестко заданных входных данных. Только то, что будет делать пользователь, и как это воспроизвести во время тестирования приложения.
Создавая пользовательскую историю, мы смотрим на продукт только через пользовательский интерфейс, мы не включаем в описание технические подробности. Тогда тестировщик будет каждый раз проходить этот путь по-разному, как и разные пользователи по-разному решают одну и ту же задачу в нашем приложении — вот в чем главная идея!
Главное в пользовательских историях — ценность продукта для пользователя. Это не тест-кейсы с их определенными вводными данными и ожидаемыми результатами. Хорошая практика — создавать отдельные учетные записи. Мы в Google часто создаем помногу тестовых учетных записей для пользователей, описанных в историях. Старые аккаунты могут быть полезны по-другому: при тестировании Google Documents мы выявили самые интересные баги как раз для старых учетных записей — при загрузке в новой версии документов, созданных в предыдущих версиях.