О чем говорят цифры. Как понимать и использовать данные - Ким Хо
Шрифт:
Интервал:
Закладка:
Ключевой вопрос в работе Джой – сколько времени следует уделять консультированию клиентов Cigna через колл-центр по поводу того, как предотвратить хроническое заболевание или замедлить его развитие. Она стремится доказать, что можно одновременно создавать дополнительную ценность для потребителей и контролировать издержки компании. Ключевая итоговая переменная для Джой – это частота первоначальной и повторной госпитализации пациентов. С одной стороны, она просматривает десятки страниц ежемесячных отчетов, где отражена динамика этого показателя. Процент повторной госпитализации то повышается, то понижается, и Джой не уверена, что понимает, почему так происходит: «Мне приходится изучать множество разных показателей, но это всего лишь цифры, они не отвечают на вопрос, что из этого следует». Но ей действительно хотелось бы выяснить, помогают ли пациентам звонки в колл-центр компании и влияют ли они на частоту повторных госпитализаций.
Чтобы лучше понять причинно-следственную связь между этими показателями, Джой обратилась к экспертам по аналитике в Cigna. Группу аналитиков в компании возглавляет Майкл Казинс. Он и его коллеги решили помочь Джой разобраться в возникшей проблеме. По словам Майкла, «хотя Джен и не специалист по методике анализа причинно-следственных связей, у нее блестящая логика, пытливый ум и она умеет задавать правильные вопросы. У нее нет математической подготовки, но она придает огромное значение аналитике». Джен относится именно к тому типу лиц, принимающих решения, с которым аналитики особенно любят работать.
Группа Казинса специализируется на применении аналитики для нужд бизнеса Cigna. Майкл и его коллеги целиком разделяют мнение Дженнифер о том, что показатель частоты госпитализаций не слишком полезен сам по себе, вне связи с вопросом о влиянии консультаций ее врачей на здоровье пациентов. Иными словами, предшествующие отчеты, показывавшие то повышение, то понижение частоты госпитализаций, были основаны на методике, которая не искала решения проблемы. В частности, не проводилось обоснованное сравнение с контрольной группой, результаты которого можно было бы использовать при принятии решения. В прошлом, например, отчеты не учитывали степень тяжести заболевания тех или иных пациентов. Группа Казинса разработала методику парной группировки пациентов в зависимости от тяжести заболевания, демографических параметров, образа жизни, региона проживания. Один из пары пациентов, у которых эти показатели были похожими, пользовался консультационными услугами колл-центра, а второй – нет. Казинс подчеркнул, что «Джой потребовалась определенная решимость, чтобы проверить, действительно ли эффективна консультационная служба, ее любимое детище. И все же она без колебаний приступила к выяснению истины».
Полученные результаты свидетельствовали: консультации врачей колл-центра по поводу некоторых болезней оказались вовсе не столь эффективны, как ожидалось; зато по другим заболеваниям картина была обратной. Джой решила сократить время телефонных консультаций для пациентов из целевой группы с определенными заболеваниями на тот период, пока не удается выяснить, как сделать их более эффективными. Для контрольной группы предполагалось внедрить консультации, способные принести реальную дополнительную ценность.
В то же время Джой продолжала совместную работу с группой Казинса над другими аналитическими проектами. Один из них – контролируемый эксперимент с разными подходами к консультированию, например с включением в процесс консультаций персонального врача пациента. Вместо того чтобы полагаться на интуицию, решая, какой подход сработает лучше, Джой с энтузиазмом реализовывала идею структурированной аналитики, например пилотные программы типа «тестируй и учись», в соответствии с которыми в год выполнялось двадцать или тридцать тестов.
Дженнифер Джой всегда отличалась аналитическим складом ума, но благодаря сотрудничеству с аналитиками она получила инструменты, позволяющие проверять различные гипотезы и принимать обоснованные решения. И хотя так и не удалось отыскать идеальный способ лечить болезнь по телефону, но Cigna по крайней мере тратит меньше денег на неэффективные формы работы с пациентами и больше на те, которые доказали свою эффективность. С другой стороны, Майкл Казинс и его коллеги извлекли большую пользу из работы с Джой и другими аналитически мыслящими топ-менеджерами компании. Они научились излагать результаты исследований языком бизнеса и объяснять их смысл пациентам.
Вот почему эту книгу мы писали для множества Дженнифер Джой в разных уголках мира, а не для Майклов Казинсов. Мы не предлагаем вам стать квалифицированным количественным аналитиком или специалистом по базам данных. Для этого потребуется намного больше, чем просто прочесть книгу, да и не у каждого есть к этому интерес и способности. Но мы предлагаем стать компетентным пользователем данных и аналитики. Тогда вы сможете правильно ставить задачу аналитикам, использовать данные в своей работе, принимать на их основе решения и пропагандировать их применение в вашей организации. Мы хотим, чтобы о вас говорили как о человеке, глубоко увлеченном аналитикой, или как о Джен Джой из Cigna: «Сама она не аналитик, но понимает их и ценит их работу». Мы не ожидаем, что вы сами начнете проводить сложный анализ баз данных, но очертить поле поиска решения, поставить нужные вопросы о данных и методологии их анализа, интерпретировать полученные ответы и на их основе повысить эффективность действий компании вы сможете. Если перефразировать заведующего кафедрой статистики Гарвардского университета Сяо Лименга, цель этой книги не в том, чтобы сделать из вас винодела (так он называет обладателей степени PhD[8] по статистике), а в том, чтобы привить вкус к хорошему вину[9].
В прошлом в большинстве случаев было куда трудней стать компетентным пользователем информации, не ориентируясь в методах и приемах ее получения и обработки. Но сегодня в этой области произошли большие перемены. Теперь не надо до тонкостей разбираться в устройстве двигателя внутреннего сгорания, чтобы стать хорошим водителем; точно так же не обязательно вникать в детали статистического анализа, чтобы использовать статистические данные для принятия решений. Аналитическое программное обеспечение взяло на себя черновую работу, иногда даже может выбирать методику анализа, соответствующую характеру данных и переменных. Некоторые новые программы (например, от компании SAS) имеют справочную функцию, простым и понятным языком объясняющую смысл тех или иных зависимостей или характер методов, применяемых для прогнозных расчетов.
Хотя потребность в квалифицированных потребителях аналитики высока, на текущий момент нет книг, просто и без математического сленга написанных для новичков в области количественного анализа. В этой книге говорится о том, что такое аналитика, как можно ее использовать во многих жизненных ситуациях и как развить свои аналитические способности. Это поможет вам не только лучше разбираться в аналитике, но и значительно эффективнее обсуждать со специалистами различные аналитические методы и их применение для решения проблем компании. В соответствии с отчетом международной консалтинговой компании McKinsey Global Institute о больших данных за 2011 год, экономике требуются более полутора миллионов компетентных в аналитике менеджеров, чтобы эффективно использовать данные, накапливаемые обществом[10]. Надеемся, что вы станете одним из них.
Роль аналитики в принятии решений
Решения в коммерческих и некоммерческих организациях принимают исходя из целого ряда факторов: опыта, интуиции, результатов экспериментов, аналитических исследований и накопленных данных. В книге Moneyball, посвященной применению аналитических процедур в профессиональном бейсболе, говорится, что одно это отнюдь не гарантирует неизменно положительного результата. Команда Oakland Athletics выигрывала далеко не каждую игру описанного в книге сезона, да и всех последующих тоже. Тем не менее аналитика способна обеспечить некоторое конкурентное преимущество тем, кто в ней разбирается. Oakland Athletics добивается гораздо лучших результатов, чем можно было бы ожидать с учетом ее более чем скромного бюджета.
Конечно, ответственный менеджер вполне способен принять удачное решение, руководствуясь лишь интуицией и опытом, особенно когда решение лежит в сфере его непосредственной компетенции. Но почти в каждой области деятельности можно найти доказательства того, что решения, принятые на основе анализа данных, более точны и эффективны, обеспечивают больший выигрыш для организации[11]. В настоящее время в профессиональном бейсболе практически каждая команда применяет аналитические подходы, разработанные в Oakland Athletics. Даже команда New York Yankees, некогда чуть ли не гордившаяся отказом от аналитики в вопросах подбора игроков и определения стратегии игры, сейчас пригласила на работу 21 специалиста по спортивной статистике.