ФИЗИКА И МУЗЫКА - Анфилов
Шрифт:
Интервал:
Закладка:
Многие рвущиеся вперед энтузиасты электрической музыки, как и музыканты «прежнего закала», уже давно поняли и приняли эти выводы.
КАЛЕЙДОСКОП НОВИНОК
У нас в стране еще до войны были осуждены и высмеяны трескучие декларации об «электрическом перерождении» музыкальных средств. Вместо хвастливой рекламы шел и поныне идет кропотливый поиск новых технических решений, новых подходов, новых эффектов. И это направление дало добрые всходы.
Лучшие инструменты — такие, как терменвокс, как эмиритон Иванова, Дзержковича и А. В. Римского-Корсакова, как «В-8» и экводин Володина, — заслужили стойкое одобрение у публики и музыкантов. Экводин отмечен Большим призом на Всемирной выставке 1958 года в Брюсселе. Восхищенные американцы заказали тогда у нас большую партию этих инструментов.
В течение нескольких лет работает в Москве научный штаб искателей электронного голоса — лаборатория студийной радиовещательной техники Всесоюзного института звукозаписи. Из стен этой маленькой лаборатории вышли каждому знакомые и всеми любимые «колокольчики», распевающие на весь свет «Песню о Родине» — аппарат радиовещательных позывных сигналов. Он надежен и прост: медленно вращается диск, замыкаются контакты, включаются ламповые генераторы.
В лаборатории родились сложные клавишные инструменты-— «электронный гармониум», «камертонное пианино». Стоит отметить компактные «электроколокола», отлично заменяющие громоздкие театральные и оркестровые звонницы из металла. Электроколокола, детище изобретателя Василия Трифоновича Мальцева, — пример удачной электрической имитации давно известного тембра. По звуку их почти невозможно отличить от настоящих. Кстати сказать, был случай, когда к одному из энтузиастов электромузыкальной техники обращались, прослышав об электроколоколах, церковные власти; правда, безуспешно — изобретатель отказался от приглашения поставить электронику на службу религии, в чем, как видите, она явно нуждается.
Другому сотруднику этой лаборатории, кандидату искусствоведения Саулу Григорьевичу Корсунскому, принадлежит еще одна новая разработка — электроорган на полупроводниках, названный кристадином. Легкий, прочный, надежный, он занимает совсем немного места, создает мягкие, нежные созвучия, -чуть-чуть напоминающие звук фисгармонии, а энергии расходует, если не считать динамиков. .. три ватта. Всего-навсего! Столько же, сколько лампочка карманного фонарика.
Полупроводники, эти чудесные кристаллы, изгоняющие стеклянные пузыри радиоламп, обещают сыграть революционную роль в электромузыкальной технике. Они подводят твердый фундамент под мечту о миниатюрности, надежности, экономичности инструментов. Быть может, настанет день, когда какая-нибудь электроскрипка станет довольствоваться энергией от батарейки величиной с пуговицу или даже кормиться светом — тем самым, что ее освещает. На очереди освоение микромодулей — еще одной волшебной новинки бурно развивающейся радиоэлектроники. Усилитель величиной со спичечную головку, сложнейшие схемы, упрятанные в объем наперстка! Есть где развернуться изобретательской мысли! Ведь чем дальше, тем запутаннее, богаче деталями будут конструкции новых инструментов. Как вы сейчас увидите, это абсолютно неизбежно.
ЛЕПКА ТЕМБРА
Иному простодушному человеку кажется: ну что тут мудреного — выдумывать электрические голоса. Нынче не то, что в 20-е годы: есть генераторы, реостаты, усилители, радиофильтры, — так группируй их по-разному, пробуй всевозможные варианты и дело с концом. В действительности все обстоит куда хитрее.
Читатель помнит: в красивом тембре важную роль играют призвуки естественных гармонических обертонов. Таково первое требование, предъявляемое нашим ухом к благозвучности тембра.
И в обычных инструментах это требование выполняется сравнительно легко. Струны или столбы воздуха колеблются так, что делятся на целое число частей, возбуждая вдвое, втрое, вчетверо и т. д. более частые колебания — натуральные обертоны. А в электрических системах? Там законы колебаний, вообще говоря, иные. Простейший ламповый генератор совсем не дает гармонических обертонов. Чтобы получить их, приходится идти на усложнение схем, применять разнообразные ухищрения. Если этого не делать, тембр оказывается, увы, гораздо более оригинальным, чем красивым.
А как это делать?
Известны два способа. Первый называют импульсным формированием тембра. Он основан на математической теореме, которую доказал в свое время французский ученый Фурье. Теорема гласит: если сложить какое-то число простейших синусоидальных (идеально волнообразных) колебаний, то в сумме получится одно колебание, размахи которого имеют более сложную форму. Это уже не волны, а, скажем, хребет зазубренных гор. И, наоборот, согласно теореме Фурье колебание любой формы можно разложить на совокупность простейших, синусоидальных. Всякая гряда зазубренных гор равнозначна сумме некоторого количества гряд обыкновенных волн.
Отличную иллюстрацию к теореме Фурье вы видите на звуковой дорожке киноленты (системы Шорина). Звуковые колебания там превращены в «чертеж»-диаграмму, на которой хорошо видна их форма. И если там запечатлены звуки скрипки, то форма зубчиков дорожки напоминает зубцы пилы, а, например, кларнет дает колебания, похожие своими очертаниями на строчку из букв «п». Скрипка заиграла вместе с кларнетом— форма колебаний изменилась, стала более сложной.
Мы еще вернемся к картине на звуковой дорожке киноленты. Сейчас заметим лишь, что она (а вернее, теорема Фурье) подсказывает заманчивый метод формирования тембров в электромузыкальных инструментах.
Стоит нам устроить радиотехническую систему так, чтобы генерировались не волнообразные, а более сложные импульсы. желаемой формы, и цель достигнута. Так и пробуют поступать изобретатели электромузыкальных инструментов. Беда только, что современная радиотехника не знает еще способов легкой и неограниченно сложной «лепки» колебаний разной формы. Поэтому тембры получаются бедноватые и довольно однообразные. Затруднения эти, конечно, временные. С развитием радиоэлектроники они исчезнут.
А пока есть и другой путь: раздельно генерировать электрические колебания различных частот с тем, чтобы потом просто смешивать их вместе в нужной пропорции. Это неплохой способ. Если возбуждать и складывать колебания натурального звукоряда, синтез их дал бы превосходные звучания. Однако и на этом пути изобретателей подстерегают подводные камни, особенно если инструмент достаточно сложный — многоголосный.
Дело в том, что настройка инструмента должна быть выполнена по ступеням традиционного темперированного звукоряда, а каждый отдельный голос его обязан складываться из натуральных обертонов. Первые же не совпадают со вторыми. Представляете себе, как усложняется радиотехническая система, сколько требуется генераторов! Зато малютки-полупроводники и микромодули обещают тут свершение самых смелых проектов.
ШТУРМ „МЕЛОЧЕЙ"
Строго говоря, тембр — не только акустический спектр. Есть еще такие важные элементы тембра, как начало и конец звука. Лишите звучание рояля начального звонкого удара — и вы не узнаете его.
Один немецкий профессор проделал любопытный опыт. Он давал слушать музыкантам «обезглавленные», лишенные начал звучания разных обычных музыкальных инструментов. И опытнейшие музыканты терялись, путались, стараясь отгадать, какой именно инструмент они слышат. Отсюда еще одна задача—красота «атаки» (так называют начало звука).
Музыкальный звук нежелательно включать щелчком — так, как мы включаем квартирный звонок. Это некрасиво. В одних случаях атака должна быть «мягкой» (сравнительно долгой, как у баяна), в других, наоборот, «жесткой» (быстрой, как у рояля). Поэтому клавиши электроинструмента нелишне связать с какими-нибудь плавными и регулируемыми включателями звука — магнитными, индуктивными и т. д.
Следующая задача — развитие и окончание звука. Об этом тоже приходится заботиться (в том же рояле за ударом следует характерное изменение и громкости и спектра звука). Хорошо, если в электроинструменте можно усиливать звук, нажимая пальцем клавишу. Такого удобства нет и в рояле.
И еще — маленький неконтролируемый шумок, который всегда сопровождает звучание обычных инструментов: шелест пальцев по клавишам, почти незаметное шуршание смычка, и т, д. Вы думаете, это грязь? Нет. Неконтролируемый шумок придает звукам теплоту и жизненность. «Чистота» же электрических голосов воспринимается как нечто абстрактное, холодное. Разумеется, электрический голос можно слегка «загрязнить». Можно, но это не так просто. Опять усложнение схем, десятки новых деталей.
Сколько проблем — маленьких и больших, простых и труднейших! И все требуют пристального изучения. И бывает, что какая-нибудь незначительная задача вдруг вырастает в серьезную, важную, перспективную.