История электротехники - Коллектив авторов
Шрифт:
Интервал:
Закладка:
Высокое быстродействие АЦП последовательных приближений позволило широко использовать их в многоканальных измерительных системах для обработки быстро изменяющихся напряжений, несущих измерительную информацию.
Еще большее быстродействие обеспечивают АЦП, реализующие метод считывания (параллельные АЦП).
Идея построения этих преобразователей довольно проста, но сложна их техническая реализация. Количество компараторов в таком АЦП равно числу квантов, на которое разбит диапазон преобразования. Например, в 10-разрядном параллельном АЦП нужно иметь более 1000 компараторов. На один из входов каждого компаратора подается измеряемое напряжение, а на второй — компенсирующее, соответствующее номеру кванта. Компенсирующие напряжения снимаются с выходов делителя эталонного напряжения, представляющего собой набор одинаковых резисторов, включенных последовательно, причем число резисторов равно числу квантов.
Каждому измеряемому напряжению соответствует вполне определенная комбинация состояний компараторов, которая преобразуется в выходной код АЦП. Быстродействие такого преобразователя, определяемое, в основном, быстродействием компараторов и логических схем, гораздо выше, чем у АЦП последовательных приближений.
В связи с тем, что параллельные АЦП с числом разрядов 8 и более содержат чрезвычайно большое количество элементов, их серийное производство и широкое применение стало возможным только в 80-х годах, когда интегральная технология достигла необходимого уровня развития. Об их технических возможностях дает представление преобразователь типа RDT710, выпущенный в 1987 г. фирмой «Сони-Тектроникс» (Sony-Tektronix) — совместным предприятием фирм «Сони» (Япония) и «Тектроникс» (США). Это был 10-разрядный АЦП, обеспечивающий 200 млн. преобразований в секунду.
Параллельные АЦП в настоящее время широко применяются для обработки высокочастотных сигналов, например, в цифровых осциллографах.
Успехи интегральной технологии способствовали также созданию многих других разновидностей АЦП: быстрого интегрирования, с плавающей запятой (с программируемым усилителем), алгоритмических, с дельта-сигма модуляцией и др.
12.5. ТЕНДЕНЦИИ РАЗВИТИЯ ЭЛЕКТРОИЗМЕРИТЕЛЬНОЙ ТЕХНИКИ
Использование достижений микроэлектроники и вычислительной техники в электроизмерительной технике определяют в настоящее время одну из основных тенденций ее развития, для которой характерна компьютеризация средств измерений. Рассмотрим характерные формы проявления этой тенденции.
Прежде всего, она проявляется в постепенной замене аналоговых средств измерений цифровыми, которые, в свою очередь, становятся все более универсальными и «интеллектуальными».
В качестве примера рассмотрим этапы развития производства осциллографов на фирме «Хьюлет-Пакард» — одной из ведущих в этой области. Свои первые ламповые осциллографы НР130А и НР150А фирма выпустила еще в 1956 г., а первый полупроводниковый (НР180А) — в 1966 г. К 80-м годам этой и другими фирмами было выпущено огромное количество аналоговых осциллографов различного назначения, причем многие из них обладали прекрасными техническими характеристиками. Однако уже в 1980 г. фирма «Хьюлет-Пакард» пришла к выводу, что цифровая техника может предложить лучшее и более дешевое решение задачи регистрации, отображения и обработки аналоговых сигналов, а с 1986 г. вообще прекратила выпуск аналоговых осциллографов, заменив их цифровыми. В 1992 г. фирма выпускала уже целую серию цифровых осциллографов; в эту модульную серию 54700 входит, в частности, сменный блок 54721 А с полосой 1 ГГц и частотой дискретизации 4 Готсчет/с.
Аналогичный процесс прошел на фирме «Голд» (Gould, США). Свой первый цифровой осциллограф фирма выпустила в 1975 г., а в 1988 г. прекратила выпуск аналоговых. В 1992 г. фирма выпускала 15 моделей цифровых осциллографов с полосой от 7 до 200 МГц и частотой дискретизации от 0,02 до 1,6 Готсчет/с.
Если для визуального наблюдения исследуемых процессов достаточно разрешения 8 бит, то для более сложного и точного анализа этого часто недостаточно. Поэтому постоянно ведется работа по повышению точности цифровых осциллографов. Например, фирма «Николь Инструмент корп.» (Nicolet Instrument Corp., США) предлагает осциллографы серии 400 с разрешением по вертикали 14 бит, что, конечно, недостижимо для аналоговых осциллографов.
Цифровые осциллографы не просто заменяли аналоговые, но и предоставляли потребителям новые возможности, связанные со способностью новых приборов хранить, выводить, обрабатывать и сравнивать параметры наблюдаемых сигналов. Современные цифровые осциллографы выполняют множество функций анализа сигналов, включая анализ спектра с использованием алгоритмов быстрого преобразования Фурье. В них может быть встроен принтер или плоттер, позволяющие получать твердую копию протокола или графика. Наличие узлов стандартных интерфейсов позволяет подключать цифровой осциллограф к персональному компьютеру и вычислительной сети; более того, он сам обладает возможностями небольшого компьютера. Подобные осциллографы одними из первых начали выпускать японские фирмы «Хиоки» (Hioki, модель 8850) и «Иокогава» (Yokogawa, модели 3655 и 3656).
На примере цифровых осциллографов можно проследить одно из направлений компьютеризации электроизмерительной техники. Создаются новые средства измерений с цифровой обработкой сигналов измерительной информации и возможностью построения на их основе измерительно-вычислительных систем различного назначения. В эти измерительные приборы и системы встраиваются элементы компьютерной техники, обеспечивающие цифровую обработку сигналов, самодиагностику, коррекцию погрешностей, связь с внешними устройствами и т.д.
Другое направление связано с появлением в начале 80-х годов и широким распространением персональных компьютеров (IBM PC и других). Если у потребителя есть такой компьютер, то у него фактически есть многие узлы компьютерного средства измерений: вычислительное устройство, дисплей, устройство управления, корпус, источники питания и др. Недостает лишь устройств ввода измерительной информации в компьютер (аналоговых измерительных преобразователей, устройств гальванического разделения, масштабирования, нормализации и линеаризации, АЦП и др.), ее предварительной обработки (если желательно освободить от этой работы компьютер) и специального программного обеспечения.
Поэтому в 80-х годах устройства ввода аналоговой измерительной информации в персональные компьютеры (ПК) начали серийно выпускаться в виде плат, встраиваемых в кросс ПК, в виде наборов модулей, встраиваемых в общий корпус (крейт) расширяемых шасси ПК, или в виде автономных функциональных модулей, подключаемых к ПК через внешние разъемы.
Эффективная предварительная обработка информации в такого рода устройствах стала возможной с появлением специализированных больших интегральных схем — цифровых процессоров сигналов (ЦПС). Первые однокристалльные ЦПС выпустила в 1980 г. японская фирма «НИСи корп.» (NEC Corp.), с 1983 г. аналогичную продукцию начали выпускать фирмы «Фуджицу» (Fujitsu, Япония) и «Техас Инструменте» (Texas Instruments, (США)); позднее к ним присоединились «Аналог Дивайсис» (США), «Моторола» (Motorola, США) и др.
Нужно отметить по меньшей мере две особенности компьютерных средств измерений. Во-первых, они могут быть весьма просто приспособлены для измерений различных величин; поэтому на их основе строятся универсальные средства измерений. Во-вторых, все большую долю в их себестоимости занимает стоимость программного обеспечения, освобождающего потребителя от выполнения многих рутинных операций и создающего ему максимум удобств при решении основных задач измерений.
Примером могут служить так называемые виртуальные средства измерений. В них программным путем на дисплее ПК формируется изображение лицевой панели измерительного прибора. Этой панели на самом деле физически не существует, а сам прибор состоит, например, из ПК и встроенной в него измерительной платы. Тем не менее у потребителя создается полная иллюзия работы с обычным прибором: он может нажимать на клавиши управления, выбирая диапазон измерения, режим работы и т.д., получая, в конце концов, результат измерения.
Дальнейшая микроминиатюризация электронных компонентов привела, начиная с 80-х годов, к развитию еще одного направления компьютеризации средств измерений — к созданию не только «интеллектуальных» приборов и систем, но и «интеллектуальных» датчиков.
Такой датчик содержит не только чувствительный элемент, но и сложное электронное устройство, состоящее из аналоговых и аналого-цифровых преобразователей, а также микропроцессорных устройств с соответствующим программным обеспечением. Конструкция «интеллектуального» датчика позволяет устанавливать его в непосредственной близости от объекта исследований и производить ту или иную обработку измерительной информации. При этом в центр сбора данных, который может находиться на значительном расстоянии от объекта, информация передается с помощью сигналов, обладающих высокой помехоустойчивостью, что повышает точность измерений.