Категории
Самые читаемые
RUSBOOK.SU » Научные и научно-популярные книги » Научпоп » Алекс в стране чисел. Необычайное путешествие в волшебный мир математики - Алекс Беллос

Алекс в стране чисел. Необычайное путешествие в волшебный мир математики - Алекс Беллос

Читать онлайн Алекс в стране чисел. Необычайное путешествие в волшебный мир математики - Алекс Беллос

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 17 18 19 20 21 22 23 24 25 ... 84
Перейти на страницу:

Сегодня США претендуют на первенство в исследовании оригами ничуть не меньше, чем Япония, — отчасти потому, что оригами настолько вплелось в ткань японского общества в качестве вида досуга, что японцам оказалось не так легко воспринимать это занятие серьезно, как науку. Делу не слишком помогает и произошедшее в Японии разделение на фракции между различными организациями, каждая из которых оставляет только за собой исключительное право олицетворять оригами. Меня удивило, когда Кадзуо Кобаяши — председатель Международной ассоциации оригами — отверг работу Роберта Лэнга как элитарную. «Он делает это для себя, — пробурчал Кобаяши. — Мое же оригами способствует реабилитации больных и помогает обучению детей».

Тем не менее множество японских любителей оригами создают новые интересные вещи, и я отправился в Цукубу, современный университетский город немного к северу от Токио, чтобы встретиться с одним из таких мастеров оригами. Кадзуо Хага — энтомолог на пенсии, его профессиональная специализация — эмбриональное развитие яиц насекомых. Малюсенький офис Хаги завален книгами и заставлен витринами с бабочками. Хага, которому сейчас 74 года, носит большие очки с тонкой черной оправой — она придает его лицу геометрические очертания. У Хаги высокий лоб и мягкие седые волосы, а вид — профессорский. Он довольно застенчивый человек, и поэтому заметно волновался по поводу моих предстоящих расспросов.

Но застенчивость Хаги касается только общения с другими людьми, а в оригами он — настоящий бунтарь. Определившись для себя с принадлежностью к основному течению оригами, он тем не менее никогда не чувствовал себя связанным какими-либо условностями. Например, согласно правилам традиционного японского оригами, имеется только два способа сделать первое складывание. Оба представляют собой складывание пополам — или по диагонали, так что соединяются два противоположных угла, или по средней линии, из-за чего вместе оказываются соседние углы. Называются они «первичными складками».

Хага решил нарушить традиции. Что, если сложить угол на середину стороны? Не безумная ли идея?! Первый раз он сделал такое в 1978 году, и эта простая операция открыла двери в грандиозный новый мир. Хага получил три прямоугольных треугольника, но то были не просто прямоугольные треугольники. Все они оказались египетскими — самыми известными в истории и самыми каноническими треугольниками в мире.

Подстегиваемый трепетом сделанного открытия, он написал письмо о новом складывании профессору Коджи Фушими — физику-теоретику, известному своим интересом к оригами. «Я так и не получил ответа, — сказал Хага, — но затем он внезапно опубликовал статью в журнале „Mathematics Seminar“, ссылаясь там на теорему Хаги. Вот что получилось вместо ответа». С тех пор имя Хаги получили две другие «оригами-теоремы», а по его словам, у него таких еще с полсотни.

Теорема Хаги: треугольники А, В и С — египетские

Другая теорема Хаги

В теореме Хаги угол складывается на середину стороны. Хага задался вопросом, возникнет ли что-нибудь интересное, если сложить угол на случайную точку на стороне. Решив это продемонстрировать мне, он взял синий квадратный листок из набора бумаги для оригами и красной ручкой отметил произвольную точку на одной из сторон, сложил листок так, чтобы один из противоположных углов попал на эту отметку, и сделал складку, а потом развернул листок. Затем он сложил его так, чтобы другой противоположный угол попал на ту же отметку, и сделал вторую складку, — получился квадрат с двумя пересекающимися линиями.

Хага показал мне, что пересечение двух складок всегда происходит на средней линии листа бумаги и что расстояние от выбранной произвольной точки до пересечения всегда равно расстоянию от пересечения до противолежащих углов. Меня это просто потрясло. Точка выбиралась случайным образом и вовсе не по центру. И тем не менее процесс складывания подобен самокорректируемому механизму!

Мне пришло в голову, что если про кого-то и можно сказать, что этот человек воплощает в современном мире душу Пифагора, то это определенно Кадзуо Хага. И у него, и у Пифагора одна и та же страсть к математическим открытиям, в основе которых — искреннее восхищение гармонией геометрии. И это восхищение, судя по всему, повлияло на Хагу в духовном плане аналогично тому, как это случилось с Пифагором две тысячи лет назад. «Большинство японцев пытаются в оригами создавать новые фигуры, — говорит Хага. — Моя же цель — уйти от идеи создания чего-то физического, а вместо этого открывать новые математические феномены. Вот почему я нахожу оригами таким интересным. Оказывается, в очень, очень простом мире все еще можно обнаружить захватывающие вещи».

Глава 3

Кое-что про ничто

Автор отправляется в Индию, дабы встретиться с индуистским пророком, и открывает кое-какие очень медленные методы арифметических действий, а также некоторые очень быстрые.

Каждый год в расположенный на побережье индийский город Пури стекается миллион паломников. Собираются они ради самого зрелищного фестиваля в индуистском календаре — Рат Ятра («парад колесниц»), во время которого по городу проезжают три гигантские разукрашенные колесницы. Когда я туда приехал, улицы были заполнены любителями цимбал и мантр, босоногими святыми людьми с длинными бородами, а также индийскими туристами — типичными представителями среднего класса, одетыми в модные футболки и сари неоновых цветов. Была середина лета — начало сезона дождей, и, если не лил проливной дождь, работники фестиваля опрыскивали водой лица проходивших мимо, чтобы дать немного прохлады. Хоть и не столь масштабные, процессии фестиваля Рат Ятры проходят одновременно по всей Индии, но праздник в Пури — главное событие, а участвующие в нем колесницы — самые большие.

Фестиваль начинается по-настоящему, только когда местный святой — Шанкарачарья из Пури — предстает перед толпой и благословляет собравшихся. Шанкарачарья — один из самых важных индуистских мудрецов, глава монашеского ордена, корни которого уходят в историю более чем на тысячу лет. Из-за него-то я и отправился в Пури. Он — не только духовный лидер, но и публикующий свои работы математик.

Сразу по прибытии в Индию я обратил внимание на не совсем обычное использование числительных. В гостинице, где я остановился, мне попался номер газеты «Times of India», и я прочел крупный заголовок на первой странице:

Индусов на 5 крор больше, чем считало правительство

«Крор» — индо-английское слово, означающее 10 миллионов, так что в газетной статье говорилось о том, что в Индии внезапно обнаружилось 50 миллионов жителей, о существовании которых никто никогда не подозревал. Как можно не заметить столько граждан своей страны, даже если принять во внимание, что это менее 5 процентов всего населения? Но что озадачило меня гораздо больше — так это само слово «крор». В индийском английском языке для больших чисел используются иные слова, нежели в британском или американском английском. Например, слово «миллион» вообще не применяется. Миллион выражается как «десять лакх», где «лакх» — это сто тысяч. Поскольку о «миллионе» в Индии никогда не слышали, осыпанный «Оскарами» фильм «Миллионер из трущоб» вышел здесь под названием «Кроранер из трущоб». Очень богатым человеком считается владелец крора долларов или рупий, — а вовсе не миллиона указанных единиц. Индийские эквиваленты названий чисел таковы:

  Обозначение Индийск. Обозначение Десять 10 Десять 10 Сто 100 Сто 100 Тысяча 1000 Тысяча 1,000 Десять тысяч 10 000 Десять тысяч 10,000 Сто тысяч 100 000 Лакх 1,00,000 Миллион 1 000 000 Десять лакх 10,00,000 Десять миллионов 10 000 000 Крор 1,00,00,000 Сто миллионов 100 000 000 Десять крор 10,00,00,000

Стоит заметить, что для чисел выше тысячи индийцы используют разделительную запятую после каждых двух цифр, тогда как во всем остальном мире, где используется разделительная запятая, принято ставить ее через каждые три цифры.

1 ... 17 18 19 20 21 22 23 24 25 ... 84
Перейти на страницу:
На этой странице вы можете бесплатно скачать Алекс в стране чисел. Необычайное путешествие в волшебный мир математики - Алекс Беллос торрент бесплатно.
Комментарии
Открыть боковую панель
Комментарии
Сергій
Сергій 25.01.2024 - 17:17
"Убийство миссис Спэнлоу" от Агаты Кристи – это великолепный детектив, который завораживает с первой страницы и держит в напряжении до последнего момента. Кристи, как всегда, мастерски строит