Категории
Самые читаемые
RUSBOOK.SU » Научные и научно-популярные книги » Воспитание детей, педагогика » Концепции современного естествознания - Александр Садохин

Концепции современного естествознания - Александр Садохин

Читать онлайн Концепции современного естествознания - Александр Садохин

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 16 17 18 19 20 21 22 23 24 25
Перейти на страницу:

Статистические законы в отличие от динамических отражают однозначную связь не физических величин, а статистических распределений этих величин. Но это такой же однозначный результат, как и в динамических теориях. Ведь статистические теории, как и динамические, выражают необходимые связи в природе, а они не могут быть выражены иначе, чем через однозначную связь состояний. Различается только способ фиксации этих состояний.

На уровне статистических законов и закономерностей мы также сталкиваемся с причинностью. Но это иная, более глубокая форма детерминизма; в отличие от жесткого классического детерминизма он может быть назван вероятностным (современным) детерминизмом. «Вероятностные» законы меньше огрубляют действительность, способны учитывать и отражать те случайности, которые происходят в мире.

К началу XX в. стало очевидно, что нельзя отрицать роль статистических законов в описании физических явлений. Появлялось все больше статистических теорий, а все теоретические расчеты, проведенные в рамках этих теорий, полностью подтверждались экспериментальными данными. Результатом стало выдвижение теории равноправия динамических и статистических законов. Те и другие законы рассматривались как равноправные, но относящиеся к различным явлениям. Считалось, что каждый тип закона имеет свою сферу применения и они дополняют друг друга, что индивидуальные объекты, простейшие формы движения должны описываться с помощью динамических законов, а большая совокупность этих же объектов, высшие, более сложные формы движения – статистическими законами. Соотношение теорий термодинамики и статистической механики, электродинамика Д. Максвелла и электронная теория Х. Лоренца, казалось, подтверждали это.

Ситуация в науке кардинально изменилась после возникновения и развития квантовой теории. Она привела к пересмотру всех представлений о роли динамических и статистических законов в отображении закономерностей природы. Был обнаружен статистический характер поведения отдельных элементарных частиц, никаких динамических законов в квантовой механике открыть не удалось. Таким образом, сегодня большинство ученых рассматривают статистические законы как наиболее глубокую и общую форму описания всех физических закономерностей.

Создание квантовой механики дает полное основание утверждать, что динамические законы представляют собой первый, низший этап в познании окружающего нас мира. Статистические законы более полно отражают объективные связи в природе, являются более высокой ступенью познания. На протяжении всей истории развития науки мы видим, как первоначально возникшие динамические теории, охватывающие определенный круг явлений, сменяются по мере развития науки статистическими теориями, описывающими тот же круг вопросов, но с новой, более глубокой точки зрения. Только они способны отразить случайность, вероятность, играющую огромную роль в окружающем нас мире. Только они соответствуют современному (вероятностному) детерминизму.

4.6. Принципы современной физики

Важной частью современной физической картины мира являются принципы современной физики – наиболее общие законы, влияние которых распространяется на все физические процессы, все формы движения материи.

Принцип симметрии. Обычно под симметрией (от греч. symmetria – соразмерность) понимают однородность, пропорциональность, гармонию каких-либо материальных объектов. В современном естествознании симметрия – понятие, отображающее существующий в объективной действительности порядок, определенное равновесное состояние явлений, относительную устойчивость, пропорциональность и соразмерность между составными частями целого. Симметрии бывают геометрическими (выражают свойства пространства и времени) и динамическими (выражают свойства физических взаимодействий).

Наглядных примеров симметрий довольно много. Многим творениям человеческих рук в силу разных причин придается симметричная форма. Симметричны мячи, большинство зданий и сооружений, произведений искусства. Также симметричны многие человеческие действия. Симметрию можно обнаружить в живописи, музыке, поэзии, танце. В изобилии симметрии встречаются в природе – снежинка, дождевая капля, различные кристаллы и т. д.

Приведенные примеры симметрии связаны с представлениями о структуре предметов, которая не меняется при совершении некоторых преобразований. Долгое время это были единственные симметрии, известные в науке. Но постепенно пришло осознание того, что симметрии могут быть не только наглядными, геометрическими. Есть целый ряд симметрий, связанных с описанием каких-либо изменений сложных естественных процессов. Эти симметрии не фиксируются в наблюдениях, они становятся заметны лишь в уравнениях, описывающих природные процессы. Поэтому физики, исследуя математическое описание той или иной физической системы, время от времени открывают новые, часто неожиданные симметрии. Эти симметрии достаточно тонко «запрятаны» в математическом аппарате и совсем не видны тому, кто наблюдает саму физическую систему.

С точки зрения физики симметричным является объект, который в результате определенных преобразований остается неизменным, инвариантным. Инвариантность – это неизменность какой-либо величины при изменении физических условий, способность не изменяться при определенных преобразованиях.

Симметрия в физике – это свойство физических величин, детально описывающих поведение системы, оставаться неизменными (инвариантными) при определенных преобразованиях этих величин.

Симметрии в физике тесно связаны с законами сохранения физических величин – утверждениями, согласно которым численные значения некоторых физических величин не изменяются со временем в любых процессах или в определенных классах процессов.

Так, закон сохранения энергии вытекает из однородности времени. Время симметрично относительно начала отсчета, все моменты времени равноправны.

Закон сохранения импульса вытекает из однородности пространства. Все его точки равноправны, поэтому перенос системы никак не повлияет на ее свойства.

Закон сохранения момента импульса вытекает из изотропности пространства. Свойства пространства одинаковы по всем направлениям, поэтому поворот системы не влияет на ее свойства.

Также есть целый ряд симметрий, действующих в микромире. Они описывают разные аспекты взаимопревращений элементарных частиц и лежат в основе таких законов сохранения, как закон сохранения электрического заряда, барионного и лептонного зарядов и ряда других законов, открытых в последнее время. Таким образом, XX в. подтвердил огромную роль принципа симметрии в физике.

Принцип дополнительности и соотношения неопределенностей является основополагающим в современной физике. Он был сформулирован в 1927 г. Н. Бором для объяснения феномена корпускулярно-волнового дуализма.

В ходе своих исследований Н. Бор обратил внимание на то, что все предметы и явления, которые мы видим вокруг себя (и, конечно, измерительные приборы для регистрации элементарных частиц), состоят из огромного множества микрочастиц. Иными словами, они являются макроскопическими системами и ничем иным. Сам человек также существо макроскопическое. Поэтому наши органы чувств не воспринимают микропроцессов. Понятия, которыми мы пользуемся для описания предметов и явлений окружающего мира, – макроскопические понятия. С их помощью можно легко описать любые физические процессы, проходящие в макромире. Но применить эти понятия для описания микрообъектов полностью нельзя, так как они не адекватны процессам микромира.

В то же время других понятий у нас нет и быть не может. Чтобы компенсировать неадекватность нашего восприятия и представления об объектах микромира, нам приходится применять два дополняющих друг друга набора понятий, хотя с точки зрения классической науки они взаимно исключают друг друга. Эти понятия – частицы и волны. Только в совокупности они дают исчерпывающую информацию о квантовых явлениях.

Принцип суперпозиции (наложения) – допущение, согласно которому результирующий эффект представляет собой сумму эффектов, вызываемых каждым воздействующим явлением в отдельности. Одним из простых примеров принципа суперпозиции является правило параллелограмма, в соответствии с которым складываются две силы, воздействующие на тело. Этот принцип выполняется при условии, что воздействующие явления не влияют друг на друга. Поэтому в ньютоновской физике данный принцип не универсален и во многих случаях справедлив лишь приближенно.

В микромире, наоборот, принцип суперпозиции – фундаментальный принцип. Наряду с принципом неопределенности он составляет основу математического аппарата квантовой механики. Но, к сожалению, в квантовой теории этот принцип лишен той наглядности, которая характерна для механики И. Ньютона. Его интерпретируют так: пока не проведено измерение, бессмысленно спрашивать, в каком состоянии находится физическая система. Иными словами, до измерения система находится в суперпозиции двух возможных состояний, т. е. ее состояние неопределенно. Акт измерения переводит физическую систему скачком в одно из этих состояний.

1 ... 16 17 18 19 20 21 22 23 24 25
Перейти на страницу:
На этой странице вы можете бесплатно скачать Концепции современного естествознания - Александр Садохин торрент бесплатно.
Комментарии
Открыть боковую панель
Комментарии
Сергій
Сергій 25.01.2024 - 17:17
"Убийство миссис Спэнлоу" от Агаты Кристи – это великолепный детектив, который завораживает с первой страницы и держит в напряжении до последнего момента. Кристи, как всегда, мастерски строит