Категории
Самые читаемые
RUSBOOK.SU » Научные и научно-популярные книги » Физика » Как измеряются расстояния между атомами в кристаллах - Александр Китайгородский

Как измеряются расстояния между атомами в кристаллах - Александр Китайгородский

Читать онлайн Как измеряются расстояния между атомами в кристаллах - Александр Китайгородский

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 2 3
Перейти на страницу:

2d sin θ = nλ (2)

Оно носит название уравнения Брэгга.

Кристалл, как мы уже сказали, можно разбить на системы плоскостей бесконечным числом способов. Но эффективной для отражения (теперь вам понятен смысл этих слова, не правда ли?) окажется лишь система плоскостей с таким межплскостным расстоянием и ориентированная так по отношению к падающему лучу, чтобы выполнялось уравнение Брэгга.

Если падающий луч монохроматический (то есть электромагнитная волна имеет одну определенную длину), то при произвольном положении кристалла по отношению к лучу отражение может и не произойти (вернее, суммарный эффект множества отражений может оказаться нулевым). Однако, поворачивая кристалл, мы можем по очереди привести в отражающее положение различные системы плоскостей. Именно такой способ работы и оказался на практике наиболее подходящим.

Из уравнения Брэгга (уравнение (2)) следует, что для заданной длины волны существует минимальное значение расстояния d между плоскостями, при котором возможно селективное отражение. Это расстояние λ/2 (поскольку синус не может быть больше единицы). С другой стороны, из приведенной выше формулы межплоскостных расстояний (формула (1)) ясно, что наибольшим значениям d соответствуют самые малые значения h и k.

Большей частью при рентгеноструктурном анализе используется одна из длин волн характеристического излучения меди, а именно 1,54 ангстрема[1]. Тогда наименьшие межплоскостным расстояния, способные принять участие в создании дифракционной картины, равны 0,77 ангстрема. Располагая этими сведениями, можно оценить, сколько систем плоскостей дадут отражения, если известны периоды решетки a и b. Попробуйте решить эту задачу геометрически для a=10 и b=20 ангстремам.

Для этой цели надо провести окружность радиуса 1/λ в пространстве (в нашем двумерном случае – в плоскости) «обратной» решетки. И далее подсчитать число… (чего, догадайтесь). Но что такое «обратная» решетка и зачем нам понадобилось это новое понятие?

В нашем случае обратной решеткой называется решетка, ячейка которой есть прямоугольник со сторонами 1/a и 1/b. Как видите, прилагательное «обратная» вполне уместно. На рисунке 6 построена такая решетка. Выберем начало координат в каком-либо узле и проведем оси координат – одну перпендикулярно к оси кристалла, по которой период равен a, вторую перпендикулярно к оси с периодом b. Проведем теперь в этой решетке вектор (он так и называется: вектор обратной решетки), соединяющий начало отсчета с узлом обратной решетки, номер которого 10-й по одной оси, и 3-й по другой. Чему равна длина этого вектора? Возвратимся к уравнению (1) для межплоскостного расстояния и без труда и с интересом заметим, что длина вектора равна 1/d для системы плоскостей с h=10 и k=3.

Но этого мало. Легко доказать (докажите), что проведенный вектор обратной решетки перпендикулярен к системе плоскостей, для которых h=10, k=3. И, конечно, это справедливо для любого узла номера h, k. А как будет обстоять дело, если номер узла содержит кратный множитель n? Ответ очевиден – в этом случае длина вектора обратной решетки будет равняться n/d.

Вот теперь мы располагаем всеми неободимыми сведениями для того, чтобы вернуться к опыту. В чем же состоит эксперимент? Кристалл устанавливается на специальный держатель так, чтобы одна из его осей (одно из ребер его элементарной ячейки) была вертикальной, и поворачивается около этой оси. Таким способом мы по очереди подставляем в «отражающее» положение все системы узловых плоскостей кристалла. Для того чтобы «поймать» отраженный луч, можно прибегнуть либо к фотографическом методу, либо использовать ионизационную камеру, счетчик Гейгера или иной прибор, регистрирующий ионизирующее излучение.

Сейчас, разумеется, все это делается автоматически, а в то время, когда пишущий эти строки начинал работать, процедура была такой. Устанавливался кристалл, затем приемник вторичного луча проворачивался во всем диапазоне улов. Глаз следил при этом за показывающим ток прибором. Потом кристалл поворачивался, скажем, на один градус, и далее эти действия повторялись до тех пор, пока мы не «натыкались» на отраженный луч. При этом, как ясно из рисунка 7, фиксировались два угла – значение брэгговского угла θ и положение нормали к отражающей плоскости (по отношению к какому-либо произвольному началу отсчета).

Перед исследователем лежал лист бумаги, и он начинал строить обратную решетку. Откладывал положение нормали к отражающей плоскости и наносил на линию этой нормали значение n/d, которое однозначно определялось из уравнения Брэгга. Когда эта работа заканчивалась (в старое доброе время она занимала месяцы, а сейчас автоматический дифрактометр выполняет ее в сотни раз быстрее), физик обретал картину обратной решетки. Из ее ячейки он немедленно выяснял размеры ячейки кристалла, а каждому отражению мог приписать номер узла обратной решетки, а значит, индексы h и k и порядок отражения n.

Кроме того, исследователю известны интенсивности всех отражений. Таким образом, в его распоряжении имеются практически все сведения о структуре кристалла, всё, что касается характера строения молекулы из атомов и кристалла из молекул.

Теперь нам надо перейти от «пустой» решетки, состоящей из одних узлов, к решетке, начиненной атомами. На каких деталях дифракционной картины сказывается структура ячейки? Ответ окажется следующим: структура ячейки влияет на интенсивность отраженных лучей. Что же касается геометрии дифракционной картины, то она определяется только видом решетки. Атомы внутри ячейки не добавляют «лишних» отраженных лучей. В то же время вполне возможно, что структура ячейки заставит пропасть некоторые отражения – доведет их интенсивность до нуля.

Откуда следует такое заключение? Дело в том, что атомы внутри ячейки не создадут новых систем плоскостей. Узор атомов приведет лишь к возникновению «вставных» плоскостей. Взгляните, на рисунке 8 изображена та же решетка, что и на рисунке 4. Но теперь она не «пустая». Выберем опять предельно простой случай. Предположим, что реальная решетка построена из двухатомных молекул, а узел решетки был взят в центре такой молекулы. Реальная система плоскостей (для примера взят случай h=2 и k=1) будет выглядеть теперь, как и показано на рисунке 8. Отраженный луч пойдет в ту же сторону, брэгговский угол не изменится.

Покажем, что интенсивность отраженного луча будет зависеть от структуры ячейки – в данном случае от межатомного расстояния в молекуле и от угла, который образует ось молекулы с осью ячейки.

Интенсивность излучения пропорциональна квадрату амплитуды волны. Действительно, пусть в точке наблюдения поле, создаваемое решеткой атомов, записывается как A cos ωt. Интенсивность равна

Черточка сверху означает усреднение по времени (колебания происходят быстро, и опыт фиксирует средние значения). Но

(это несложно доказать). Поэтому интенсивность оказывается пропорциональной A² – квадрату амплитуды волны.

В случае решетки двухатомных молекул результирующее поле электромагнитной волны можно рассматривать как сумму полей двух простых решеток. Эти два поля придут в точку наблюдения со сдвигом фаз, который мы обозначим 2α. Сохраняя выражение A cos ωt для решетки узлов, мы запишем теперь сумму полей двух решеток в виде

A cos (ωt+α)+A cos (ωt-α).

Каждый узел «расщепился» на две частицы, создающие одно поле с опережением по фазе, а другое с отставанием. Складывая, возводя в квадрат и усредняя по времени, мы получим, что интенсивность отраженного луча будет пропорциональна cos²α.

По определению,

где λ – длина волны, а Δ – разность хода. Хотя вывод выражения для разности хода Δ ничуть не отличается от вывода формулы Брэгга, мы все же для этого случая провели аккуратное построение на рисунке 9, из которого читатель, слегка помучившись, найдет нужное выражение:

Δ = |OC| + |OD| = 2rn sin θ.

Где rn – проекция радиуса-вектора

(соединяющего атомы молекулы) на направлением распространения отраженной волны (на направление нормали

), θ – брэгговский угол рассеяния. Используем уравнение Брэгга и определение обратного вектора:

откуда разность фаз

Итак, интенсивность отраженной волны, пропорциональная cos²θ, действительно определяется структурой элементарной ячейки кристалла. Очевидно, что если атомов в ячейке не два, а много, то все рассуждения будут аналогичными.

1 2 3
Перейти на страницу:
На этой странице вы можете бесплатно скачать Как измеряются расстояния между атомами в кристаллах - Александр Китайгородский торрент бесплатно.
Комментарии
Открыть боковую панель
Комментарии
Сергій
Сергій 25.01.2024 - 17:17
"Убийство миссис Спэнлоу" от Агаты Кристи – это великолепный детектив, который завораживает с первой страницы и держит в напряжении до последнего момента. Кристи, как всегда, мастерски строит