Категории
Самые читаемые
RUSBOOK.SU » Бизнес » Делопроизводство, офис » Статистика: учебное пособие - Леонид Букин

Статистика: учебное пособие - Леонид Букин

Читать онлайн Статистика: учебное пособие - Леонид Букин

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 2 3 4 5
Перейти на страницу:

При решении некоторых вопросов удобнее пользоваться накопленными частотами распределения. Кривая накопленных частот распределения носит название «кумулята распределения». При построении кумуляты на оси абсцисс откладываются значения признака, на оси ординат – накопленные частоты. Построение вариационного ряда распределения и его графическое изображение позволяют получить первое представление о его наиболее характерных общих чертах. В то же время статистическое изучение совокупности не может ограничиться лишь простым упорядочением наблюдаемых величин. К тому же ряды распределения и их графики бывают довольно громоздкими, так как включают в себя всю исходную информацию. Поэтому наиболее рациональным путем статистического описания распределения будет вычисление определенных числовых характеристик, отражающих реальные свойства совокупности. К таким характеристикам прежде всего относятся характеристики центральной тенденции ряда распределения, т. е. нахождение его центрального значения; рассеивания значений признака относительно центра распределения; асимметрии и островершинности распределения. Изучение статистических характеристик распределений целесообразно начать с рассмотрения наиболее простых и в то же время чаще всего используемых в статистическом анализе, т. е. с изучения средних величин; затем научиться измерять вариацию, изучить меры скошенности и островершинности. Все эти показатели тех или иных особенностей распределения составляют единую систему статистических характеристик.

Однако применение тех или иных статистических методов предполагает прежде всего однородность изучаемой совокупности: нельзя, например, анализировать совокупность, состоящую из разных категорий хозяйств, включающую предприятия разной специализации и т. д. Для успешного решения задач необходимо глубокое понимание сущности изучаемого процесса или явления. Учитывая сложность, неоднородность экономических явлений и процессов, необходимо производить анализ таким образом, чтобы наиболее существенные различия между отдельными группами явлений не затушевывались, а выделялись для более успешного их изучения. В то же время объединение в группы сходных однотипных явлений помогает выявить их черты и особенности, которые при изучении каждого явления отдельно могут оставаться незамеченными. Выделение в каждой совокупности общественно/экономических типов явлений – главное условие ее научного анализа. А это можно осуществить, только применяя метод типологических группировок.

Массовые явления хозяйственной деятельности предприятий, являющиеся объектом статистического изучения, имеют сложный характер, обладают качественной общностью, свойственной данному явлению, но в то же время имеют и различия. Так, производством какой-либо продукции занимаются сельскохозяйственные предприятия и фермерские хозяйства и т. д. Стало быть, при характеристике производства данного вида продукции в регионе следует исходить из учета качественных особенностей предприятий, производящих эту продукцию, – в противном случае выводы будут неточными, а принимаемые на основании таких выводов решения – неэффективными.

Типологическая группировка данных – основной прием изучения экономических явлений, обеспечивающий качественную сопоставимость единиц совокупности и дающий возможность получения обобщенного количественного значения признака.

1.2. Методы измерения обобщающих характеристик совокупности

Метод группировок позволяет изучить состояние и взаимосвязи экономических явлений, если группы будут охарактеризованы показателями, раскрывающими наиболее существенные стороны изучаемого явления.

При анализе и планировании необходимо опираться не на случайные факты, а на показатели, выражающие основное, типичное, коренное. Такую характеристику дают различные виды средних величин, а также мода и медиана.

Вопрос об однородности совокупности не должен решаться формально по форме ее распределения. Его, как и вопрос о типичной средней, нужно решать, исходя из причин и условий, формирующих совокупность. Однородной является такая совокупность, единицы которой формируются под воздействием общих главных причин и условий, определяющих общий уровень данного признака, характерный для всей совокупности.

Согласно теории типологических группировок, решающее значение в оценке однородности совокупности принадлежит не форме распределения, а размеру вариации и условиям ее формирования. Для качественно однородной совокупности характерна вариация в определенных пределах, после чего начинается новое качество. Вместе с тем к этим границам для оценки качественной однородности совокупности надо подходить с точки зрения существа дела, а не формально, так как одно и то же количество в разных условиях выражает новое качество. Например, при одной и той же численности рабочих предприятия одних отраслей промышленности являются крупными, а других – мелкими.

Для всестороннего и углубленного изучения явлений, для объективной характеристики типов явлений, их взаимоотношений и процессов, обусловленных развитием системы как целого, необходимо сочетать групповые средние с общими средними. Сочетание таких средних и является одним из основных элементов анализа сложных систем. Это сочетание связывает в одно целое два органически дополняющих друг друга статистических метода: метод средних величин и метод группировки. При расчете средней индивидуальные варьирующие по группе значения заменяются одним средним значением. При этом случайные отклонения значения признака по отдельным единицам в сторону увеличения или уменьшения взаимно уравновешиваются и погашают друг друга, а в величине средней проявляется типичный размер признака, свойственный данной группе. Средняя величина служит характеристикой совокупности и в то же время относится к отдельному ее элементу – носителю качественных особенностей явления. Значение средней вполне конкретно, но одновременно и абстрактно; оно получено путем абстрагирования от случайного индивидуального по каждой единице с целью выявления того общего, типичного, что свойственно всем единицам и что формирует данную совокупность. При расчете средней величины численность единиц совокупности должна быть достаточно большой. Величина средней определяется как отношение общего объема явлений к числу единиц совокупности в группе. Для несгруппированных данных это будет средняя арифметическая простая:

а для сгруппированных данных, где каждое значение признака имеет свою частоту, – средняя арифметическая взвешенная:

где Xi – значение признака; fi – частота этих значений признака.

Поскольку средняя арифметическая рассчитывается как отношение суммы значений признака к общей численности, она никогда не выходит за пределы этих значений. Средняя арифметическая обладает рядом свойств, которые широко используются в целях упорядочения расчетов.

1. Сумма отклонений индивидуальных значений признака от средней величины всегда равна нулю:

Доказательство. n

Разделив левую и правую часть на

 получим:

2. Если значения признака (Xi) изменить в k раз, то средняя арифметическая также изменится в x раз.

Доказательство.

Среднюю арифметическую из новых значений признака обозначим X, тогда:

Постоянную величину 1/k можно вынести за знак суммы, и тогда получим:

3. Если из всех значений признака Xi вычесть или прибавить одно и то же постоянное число, то средняя арифметическая уменьшится или увеличится на эту величину.

Доказательство.

Средняя из отклонений значений признака от постоянного числа будет равна:

Точно так же доказывается это и в случае прибавления постоянного числа.

4. Если частоты всех значений признака уменьшить или увеличить в n раз, то средняя не изменится:

При наличии данных об общем объеме и известных значениях признака, но неизвестных частотах для определения среднего показателя используют формулу среднеарифметической взвешенной.

Например, имеются данные о ценах реализации капусты и общей выручке за различные сроки реализации (табл. 1).

Таблица 1.

Цена реализации капусты и общая выручка за различные сроки реализации

Так как средняя цена представляет отношение общей выручки к общему объему реализованной капусты, то вначале следует определить количество реализованной капусты по разным срокам реализации как отношение выручки к цене, а затем уже определить среднюю цену реализованной капусты.

1 2 3 4 5
Перейти на страницу:
На этой странице вы можете бесплатно скачать Статистика: учебное пособие - Леонид Букин торрент бесплатно.
Комментарии
Открыть боковую панель
Комментарии
Вася
Вася 24.11.2024 - 19:04
Прекрасное описание анального секса
Сергій
Сергій 25.01.2024 - 17:17
"Убийство миссис Спэнлоу" от Агаты Кристи – это великолепный детектив, который завораживает с первой страницы и держит в напряжении до последнего момента. Кристи, как всегда, мастерски строит