Брайан Грин. Ткань космоса: Пространство, время и структура реальности - Брайан Грин
Шрифт:
Интервал:
Закладка:
В более общем смысле набор физических законов обеспечивает нас алгоритмом эволюции начального состояния физической системы в момент времени t0 к состоянию в некоторый другой момент времени t + t0. Конкретно, этот алгоритм может быть рассмотрен как отображение U(t), которое действует на начальное состояние S(t0) и производит S(t + t0), что означает S(t + t0) = U(t)S(t0). Мы говорим, что законы, приводящие к U(t), являются симметричными во времени, если имеется отображение T, удовлетворяющее соотношению U(–t) = T –1 U(t)T. На обычном языке это уравнение говорит, что при помощи подходящих манипуляций над состоянием физической системы в один момент (достигаемых с помощью T), эволюция на время t вперед во времени в соответствии с законами теории (выражаемой через U(t)) становится эквивалентной эволюции системы на t единиц времени назад во времени (обозначаемой U(–t)). Например, если мы определи состояние системы частиц в один момент через их положения и скорости, тогда T будет оставлять все положения частиц фиксированными и менять на противоположные все скорости. Эволюция такой конфигурации частиц вперед во времени на промежуток t эквивалентна эволюции оригинальной конфигурации частиц назад во времени на промежуток t. (Фактор T –1 отменяет обращение скоростей так, что в конце не только положения частиц совпадают с теми, которые они имели t единиц времени назад, но таковы будут и их скорости).
Для определенного набора законов оператор T более сложен, чем в случае ньютоновской механики. Например, если мы изучаем движение заряженных частиц в присутствии электромагнитного поля, обращение скоростей частиц будет не адекватно уравнениям, которые дадут эволюцию, в которой частицы заново проходят свои шаги. Вместо этого направление магнитного поля также должно быть обращено. (Это требуется, чтобы член v x B в уравнении для силы Лоренца остался неизменным). Таким образом, в этом случае операция T выполняет все эти преобразования. Тот факт, что мы проделываем больше, чем просто обращаем все скорости частиц, никак не влияет на обсуждение, которое следует дальше в тексте. Все, что имеет значение, это то, что движение частицы в одном направлении точно так же согласуется с законами физики, как и движение частицы в обратном направлении. То, что мы обращаем любые магнитные поля, которым случилось присутствовать, чтобы выполнить это, не имеет особого значения.
Ситуация становится более тонкой в случае слабых ядерных взаимодействий. Слабые взаимодействия описываются особой квантовой теорией поля (коротко обсужденной в Главе 9), и общая теорема показывает, что теории квантовых полей (при условии, что они локальны, унитарны и Лоренц-инвариантны, – что только и представляет интерес) всегда симметричны относительно объединенных операций сопряжения заряда С (которая заменяет частицы на их античастицы), четности P (которая переворачивает положения относительно исходных) и чистой операции обращения времени T (которая заменяет t на –t). Так что мы должны переопределить операцию T, заменив ее на операцию СРТ, но если Т-инвариантность безусловно требует, чтобы была введена операция СР, тогда Т больше не может быть просто интерпретирована как обратное прохождение частицами их шагов (поскольку, например, сама идентификация частиц будет изменена таким Т – частицы будут заменены на их античастицы, – а потому обратного прохождения оригинальными частицами их шагов быть не может). Как оказывается, имеются некоторые экзотические экспериментальные случаи, в которых мы попадаем в эту ситуацию. Имеются определенные виды частиц (К-мезоны, В-мезоны), чья манера поведения СРТ-инвариантна, но не инвариантна относительно одной операции обращения времени T. Это было установлено косвенно в 1964 Джеймсом Кронином, Валом Фитчем и их сотрудниками (за что Кронин и Фитч получили в 1980 Нобелевскую премию) через показ, что К-мезоны нарушают СР-симметрию (подразумевая, что они должны нарушать Т-симметрию, чтобы не нарушать СРТ-симметрию). Более недавно нарушение Т-симметрии было непосредственно установлено в эксперименте CPLEAR в ЦЕРНе и в эксперименте KTEV в Фермилабе. Грубо говоря, эти эксперименты показали, что если вы представили фильм с записью процессов, содержащих эти мезоны, вы будете в состоянии определить, проецируется ли этот фильм в правильном прямом направлении времени, или в обратном. Другими словами, эти особые частицы могут различать прошлое и будущее. Что остается неясным, однако, имеет ли это какое-нибудь отношение к стреле времени, которую мы ощущаем в повседневном контексте. Как-никак, это экзотические частицы, которые могут быть произведены на короткие моменты в высокоэнергетических столкновениях, но они не составляют привычные материальные объекты. Для многих физиков, включая меня, кажется маловероятным, что необратимость времени, проявляемая этими частицами, играет роль в ответе на загадку стрелы времени, так что мы не будем дальше обсуждать этот исключительный пример. Но правда в том, что никто не знает этого с уверенностью.
3. Я иногда нахожу, что имеется сильное нежелание согласиться с теоретическим утверждением, что кусочки яичной скорлупы могли бы на самом деле собраться назад вместе в изначальное, неиспорченное яйцо. Но симметрия законов физики по отношению к обращению времени, как было с большой подробностью рассмотрено в предыдущем комментарии, подразумевает, что это то, что могло бы случиться. На микроскопическом уровне разбивание яйца есть физический процесс, затрагивающий различные молекулы, из которых состоит скорлупа. Разбивание возникает и скорлупа растрескивается, поскольку группы молекул подвергаются силам, чтобы отделить их от компактного существования в яйце. Если эти движения молекул имели бы место в обратном направлении, молекулы бы объединились назад вместе, соединив скорлупу в первоначальную форму.
4. Чтобы удержать суть современного способа размышлений об этих идеях, я пропустил некоторую очень интересную историю. Собственные раздумья Больцмана по поводу энтропии проходили через существенные усовершенствования в течение 1870х и 1880х, во время которых полезными были взаимодействия и обмены информацией с такими физиками, как Джеймс Клерк Максвелл, лорд Кельвин, Джозеф Лошмидт, Джозайя Уиллард Гиббс, Анри Пуанкаре, С.Х. Бербери и Эрнест Цермело. Фактически, Больцман сначала думал, что он сможет доказать, что энтропия всегда и абсолютно будет не уменьшаться для изолированной физической системы, а не что просто очень маловероятно получить такое уменьшение энтропии. Но возражения, выдвинутые этими и другими физиками, постепенно привели Больцмана к выделению статистического/вероятностного подхода к этой теме, одного из тех, которые все еще используются сегодня.
5. Я представляю, что все мы используем издание Войны и Мира из Библиотеки Современной Классики (Modern Library Classics) в переводе на английский Констанции Гарнетт, содержащем 1 386 страниц текста.
6. Склонный к математике читатель должен заметить, что поскольку числа могут стать столь велики, энтропия на самом деле определяется как логарифм числа возможных перестановок, деталь, которая нас тут не касается. Однако, как принципиальный момент, это важно, поскольку очень удобно для энтропии быть так называемой экстенсивной величиной, что означает, что если вы объедините две системы вместе, энтропия их союза есть сумма их индивидуальных энтропий. Это остается правильным только для логарифмической формы энтропии, так как число перестановок в такой ситуации задается произведением индивидуальных перестановок, так что логарифм числа перестановок является аддитивным.
7. Поскольку мы можем, в принципе, предсказать, где приземлится каждая страница, вы можете озаботиться, что имеется дополнительный элемент, который определяет расположение страниц: как вы соберете страницы вместе в аккуратную пачку. Это не имеет отношения к обсуждаемой физике, но в случае, если вас это беспокоит, представьте, что вы согласились, что вы будете подбирать страницы одну за одной, начиная с той, которая к вам ближе всего, затем подберете ближайшую за этой страницу и так далее. (И, например, вы можете согласиться измерять расстояния от ближайшего угла страницы, о которой идет речь).