Категории
Самые читаемые
RUSBOOK.SU » Домоводство, Дом и семья » Развлечения » Загадки и диковинки в мире чисел - Яков Перельман

Загадки и диковинки в мире чисел - Яков Перельман

Читать онлайн Загадки и диковинки в мире чисел - Яков Перельман

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 12 13 14 15 16 17 18 19 20 ... 25
Перейти на страницу:

Секрет фокуса прост: какое бы число ни было задумано, в результате перечисленных действий всегда получается одно и то же: 1089. Вот несколько примеров:

(Последний пример показывает, как должен поступать загадчик, когда разность получается двузначная.)

Всматриваясь внимательно в ход выкладок, вы, без сомнения, поймете причину такого однообразия результатов. При вычитании неизбежно должна получаться в разряде десятков цифра 9, а по сторонам ее – цифры, сумма которых = 9. При последующем сложении должна поэтому получиться на первом справа месте цифра 9, далее, от 9 + 9, цифра 8 и единица в уме, которая при сложении с девятью сотнями дает 10. Отсюда – 1089.

Если вы станете повторять этот опыт несколько раз кряду, не внося в него никаких изменений, то секрет ваш, разумеется, будет раскрыт: загадчик сообразит, что постоянно получается одно и то же число 1089, хотя, быть может, и не отдаст себе отчета в причине такого постоянства. Вам необходимо поэтому видоизменять фокус. Сделать это нетрудно, так как 1089 = 33 × 33 = 11 × 11 × 3 × 3 = 121 × 9 = 99 × 11. Достаточно поэтому просить загадчика, когда вы доведете его до числа 1089, разделить этот результат на 33, или на 11, или на 121, или на 99, или на 9, – и тогда лишь назвать ему получающееся число. У вас, следовательно, в запасе имеется 5 изменений фокуса, – не говоря уже о том, что вы можете просить загадчика также умножить сумму на любое чисто, мысленно выполняя то же самое действие.

Мгновенное деление

Из многочисленных разновидностей фокусов этого рода опишем один, основанный на уже знакомом нам свойстве множителя, состоящего из ряда девяток: при умножении на него числа с таким же числом цифр получается результат, состоящий из двух половин: первая половина представляет собою умножаемое число, уменьшенное на единицу, вторая – результат вычитания первой половины из множителя. Например: 247 × 999 = 246753; 1372 × 9999 = 13718628 и т. п. Причину легко усмотреть из следующей строки:

247 × 999 = 247 × (1000 – 1) = 247000 – 247 = 246999 – 246.

Пользуясь этим, вы предлагаете целой группе товарищей произвести деление многозначных чисел – одному 68933106: 6894, другому 8765112348: 9999, третьему 543456: 544, четвертому 12948705: 1295 и т. д., – а сами беретесь обогнать их всех, выполняя те же задачи. И прежде чем они успеют приняться за дело, вы уже вручаете каждому бумажку с полученным вами безошибочным результатом деления: первому – 9999, второму – 87652, третьему – 999, четвертому – 9999. Вы можете сами придумать по указанному образцу ряд других способов поражать непосвященных мгновенным выполнением деления: для этого вам достаточно лишь воспользоваться некоторыми свойствами тех чисел, которые помещены в «Галерее числовых диковинок» (см. главу VI).

Любимая цифра

Попросите кого-нибудь назвать его любимую цифру. Допустим, вам назвали цифру 6.

– Вот удивительно! – восклицаете вы. – Да ведь это как раз самая замечательная из всех значащих цифр.

– Чем же она замечательна? – осведомляется ваш озадаченный собеседник.

– А вот посмотрите: умножьте вашу любимую цифру 6 на 9 и полученное число 54 подпишите множителем под числом 12345679:

Что получится в произведении? Ваш собеседник выполняет умножение – и с изумлением получает результат, состоящий сплошь из его любимых цифр:

6666666666

– Вот видите, какой у вас тонкий арифметический вкус, – заканчиваете вы. – Вы сумели избрать из всех цифр как раз ту, которая обладает столь удивительным свойством!

Но точно такой же изысканный вкус оказался бы у вашего собеседника, если бы он возлюбил какую-нибудь другую из девяти значащих цифр, потому что каждая из них обладает тем же свойством:

Почему это так, вы сообразите, если припомните то, что говорилось о числе 12345679 в «Галерее числовых диковинок».

Угадать день рождения

Фокусы, относящиеся к этой категории, могут быть изменяемы на разные лады. Опишу один из видов этого фокуса, довольно сложный, но именно потому и производящий эффектное впечатление.

Допустим, что вы родились 18 мая 1903 года и что вам теперь 20 полных лет. Но я не знаю ни даты вашего рождения, ни вашего возраста. Тем не менее я берусь отгадать то и другое, заставив вас проделать лишь некоторый ряд вычислений.

А именно: порядковый номер месяца (май, 5-й месяц) я прошу вас умножить на 100, прибавить к произведению число месяца (18), сумму удвоить, к результату прибавить 8, полученное число умножить на 5, к произведению прибавить 4, помножить результат на 10, прибавить 4 и к полученному числу прибавить ваш возраст (20).

Когда вы все это проделаете, вы сообщаете мне окончательный результат вычислений. Я вычитаю из него 444, а разность разбиваю на грани, справа налево, по 2 цифры в каждой: получаю сразу как день и месяц вашего рождения, так и ваш возраст.

Действительно. Проделаем указанные вычисления:

5 × 100 = 500

500+ 18 = 518

518 × 2= 1036

1036 + 8 = 1044

1044 × 5 = 5220

5220 + 4 = 5224

5224 × 10 = 52240

52240 + 4 = 52244

52244+ 20 = 52264

Произведя вычитание 52264 – 444, получаем число 51820. Теперь разобьем это число на грани, справа налево, по две цифры в каждой. Имеем:

5-18-20,

т. е. 5-го месяца (мая), числа 18; возраст 20 лет.

Секрет нашего фокуса легко понять из рассмотрения следующего равенства:

Здесь буква т обозначает порядковый номер месяца, t — число месяца, п — возраст. Левая часть равенства выражает все последовательно произведенные вами действия, а правая – то, что должно получиться, если раскрыть скобки и проделать возможные упрощения. В выражении 10000  т + 100 tп ни т, ни t, ни п не могут быть более чем двузначными числами; поэтому число, получающееся в результате, всегда должно, при делении на грани, по две цифры в каждой, распасться на три части, выраженные искомыми числами m,t и п. Предоставляем изобретательности читателя придумать видоизменения этого фокуса, т. е. другие комбинации действий, дающие подобный же результат.

Одно из «утешных действ» Магницкого

Читателю же предлагаю раскрыть также секрет следующего незамысловатого фокуса, который описан еще в «Арифметике» Магницкого, в главе: «Об утешных некиих действиях чрез арифметику употребляемых».

Пусть кто-либо задумает какое-нибудь число, относящееся к деньгам, к дням, к часам или к «каковой-либо иной числимой вещи». Остановимся на примере перстня, надетого на 2-й сустав мизинца (т. е. 5-го пальца) 4-го из 8 человек. Когда в это общество является отгадчик, его спрашивают: у кого из восьми человек (обозначенных номерами от 1 до 8), на каком пальце и на котором суставе находится перстень?

«Он же рече: кто-либо от вас умножи онаго который взял через 2, и к тому приложи 5, потом паки (снова) умнож чрез 5, также приложи перст на нем же есть перстень (т. е. к полученному прибавь номер пальца с перстнем). А потом умножи чрез 10, и приложи сустав на нем же перстень взложен, и от сих произведенное число скажи ми, по немуже искомое получиши.

Они же твориша (поступили) якоже повеле им, умножаху четвертого человека который взял перстень, и прочая вся, яже велеше им; якоже явлено есть: из всего собрания пришло ему число 702, из него же он вычитал 250, осталось 452, т. е. 4-й человек, 5-й палец, 2-й сустав».

Не надо удивляться, что этот арифметический фокус был известен еще 200 лет назад: задачи совершенно подобного же рода имеются уже в одном из первых сборников математических

развлечений, именно у Баше-де-Мезирьяка в его книге «Занимательные и приятные числовые задачи», вышедшей в 1612 году. Нужно вообще заметить, что большая часть математических игр, головоломок и развлечений, которые в ходу в настоящее время, очень древнего происхождения....

АРИФМЕТИЧЕСКИЕ КУРЬЕЗЫ

95 + 1 + 6/7 + 4/28 + 3 = 100

98 + 1 + 3/6 + 27/54 = 100

Подыщите еще и другие способы составления числа 100 с помощью девяти значащих цифр, употребленных по одному разу.

(См. стр. 161.)

Глава VIII Быстрый счет и вечный календарь

Вам, быть может, приходилось слышать или даже присутствовать самим на сеансах «гениальных математиков», вычисляющих в уме с поразительной быстротой, сколько вам недель, дней, минут, секунд, в какой день недели вы родились, какой день будет такого-то числа такого-то года и т. п. Чтобы выполнить большую часть этих вычислений, вовсе не нужно, однако, обладать необычайными математическими способностями. То же самое, после недолгого упражнения, может проделать и каждый из нас. Нужно только знать кое-какие секреты этих фокусов, – разоблачением которых мы сейчас и займемся.

«Сколько мне недель?»

Чтобы научиться по числу лет быстро определять число заключающихся в них недель, нужно только уметь ускоренно множить на 52, т. е. на число недель в году.

Пусть дано перемножить 36 × 52. «Счетчик» сразу же, без заминки, говорит вам результат: 1872. Как он его получил? Довольно просто: 52 состоит из 50 и 2; 36 умножается на 5 через деление пополам; получается 18 – это две первые цифры результата; далее умножение 36 на 2 делается как обыкновенно; получают 72, которые и приписываются к прежним 18: 1872.

1 ... 12 13 14 15 16 17 18 19 20 ... 25
Перейти на страницу:
На этой странице вы можете бесплатно скачать Загадки и диковинки в мире чисел - Яков Перельман торрент бесплатно.
Комментарии
Открыть боковую панель
Комментарии
Вася
Вася 24.11.2024 - 19:04
Прекрасное описание анального секса
Сергій
Сергій 25.01.2024 - 17:17
"Убийство миссис Спэнлоу" от Агаты Кристи – это великолепный детектив, который завораживает с первой страницы и держит в напряжении до последнего момента. Кристи, как всегда, мастерски строит