Общая теория статистики: конспект лекции - Нина Коник
Шрифт:
Интервал:
Закладка:
Преимуществом столбиковых (ленточных) структурных диаграмм по сравнению с секторными является их большая емкость, возможность отразить более широкий объем полезной информации. Однако эти диаграммы более эффективны при малых различиях в структуре изучаемой совокупности.
Для изображения и вынесения суждений о развитии явления во времени строятся диаграммы динамики. Для наглядного изображения явлений в рядах динамики используются диаграммы столбиковые, ленточные, квадратные, круговые, линейные, радиальные и др. Выбор вида диаграмм зависит в основном от особенностей исходных данных, цели исследования. Например, если имеется ряд динамики с несколькими неравно отстоящими уровнями во времени (1914, 1049, 1980, 1985, 1996, 2003 гг.), то часто для наглядности используют столбиковые, квадратные или круговые диаграммы. Они зрительно впечатляют, хорошо запоминаются, но не годны для изображения большого числа уровней, так как громоздки.
Когда число уровней в ряду динамики велико, целесообразно применять линейные диаграммы, которые воспроизводят непрерывность процесса развития в виде непрерывной ломаной линии. Кроме того, линейные диаграммы удобно использовать:
1) если целью исследования является изображение общей тенденции и характера развития явления;
2) когда на одном графике необходимо изобразить несколько динамических рядов с целью их сравнения;
3) если наиболее существенным является сопоставление темпов роста, а не уровней.
Для построения линейных графиков применяют систему прямоугольных координат. Обычно по оси абсцисс откладывается время (годы, месяцы и т. д.), а по оси ординат – размеры изображаемых явлений или процессов. На оси ординат наносят масштабы. Особое внимание следует обратить на их выбор, так как от этого зависит общий вид графика. Обеспечение равновесия, пропорциональности между осями координат необходимо в графике в связи с тем, что нарушение равновесия между осями координат дает неправильное изображение развития явления. Если масштаб для шкалы на оси абсцисс очень растянут по сравнению с масштабом на оси ординат, то колебания в динамике явлений мало выделяются, и, наоборот, увеличение масштаба по оси ординат по сравнению с масштабом на оси абсцисс дает резкие колебания. Равным периодам времени и размерам уровня должны соответствовать равные отрезки масштабной шкалы.
В статистической практике чаще всего применяются графические изображения с равномерными шкалами. По оси абсцисс они берутся пропорционально числу периодов времени, а по оси ординат – пропорционально самим уровням. Масштабом равномерной шкалы будет длина отрезка, принятого за единицу. Нередко на одном линейном графике приводится несколько кривых, которые дают сравнительную характеристику динамики различных показателей или одного и того же показателя. Однако на одном графике не следует помещать более 3-4 кривых, так как большое их количество неизбежно осложняет чертеж и линейная диаграмма теряет наглядность. В некоторых случаях нанесение на один график двух кривых дает возможность одновременно изобразить динамику третьего показателя, если он является разностью первых двух. Например, при изображении динамики рождаемости и смертности площадь между двумя кривыми показывает величину естественного прироста или естественной убыли населения.
Иногда необходимо сравнить на графике динамику двух показателей, имеющих различные единицы измерения. В таких случаях понадобится не одна, а две масштабные шкалы. Оду из них размещают справа, другую – слева. Однако такое сравнение кривых не дает достаточно полной картины динамики этих показателей, так как масштабы произвольны. Поэтому сравнение динамики уровня двух разнородных показателей следует осуществлять на основе использования одного масштаба после преобразования абсолютных величин в относительные.
Линейные диаграммы с линейной шкалой имеют один недостаток, снижающий их познавательную ценность: равномерная шкала позволяет измерять и сравнивать только отраженные на диаграмме абсолютные приросты или уменьшения показателей на протяжении исследуемого периода. Однако при изучении динамики важно знать относительные изменения исследуемых показателей по сравнению с достигнутым уровнем или темпы их изменения. Именно относительные изменения экономических показателей динамики искажаются при их изображении на координатной диаграмме с равномерной вертикальной шкалой. Кроме того, в обычных координатах теряет всякую наглядность и даже становится невозможным изображение для рядов динамики с резко изменяющимися уровнями, которые обычно имеют место в динамических рядах за длительный период времени. В этих случаях следует отказаться от равномерной шкалы и положить в основу графика полулогарифмическую систему.
Основная идея полулогарифмической системы состоит в том, что в ней равным линейным отрезкам соответствуют равные значения логарифмов чисел. Такой подход имеет преимущество: возможность уменьшения размеров больших чисел через их логарифмический эквивалент. Однако с масштабной шкалой в виде логарифмов график малодоступен для понимания. Необходимо рядом с логарифмами, обозначенными на масштабной шкале, проставить сами числа, характеризующие уровни изображаемого ряда динамики, которые соответствуют указанным числам логарифмов. Такого рода графики носят название графиков на полулогарифмической сетке. Полулогарифмической сеткой называется сетка, в которой на одной оси нанесен линейный масштаб, а на другой – логарифмический.
Динамику изображают и радиальные диаграммы, строящиеся в полярных координатах. Радиальные диаграммы преследуют цель наглядного изображения определенного ритмического движения во времени. Чаще всего эти диаграммы применяются для иллюстрации сезонных колебаний. Радиальные диаграммы разделяются на замкнутые и спиральные. По технике построения радиальные диаграммы отличаются друг от друга в зависимости от того, что взято в качестве пункта отсчета – центр круга или окружность. Замкнутые диаграммы отражают внутригодичный цикл динамики какого-либо одного года. Спиральные диаграммы показывают внутригодичный цикл динамики за ряд лет. Построение замкнутых диаграмм сводится к следующему: вычерчивается круг, среднемесячный показатель приравнивается к радиусу этого круга. Затем весь круг делится на 12 радиусов, которые на графике приводятся в виде тонких линий. Каждый радиус обозначает месяц, причем расположение месяцев аналогично циферблату часов: январь – в том месте, где на часах 1, февраль – где 2 и т. д. На каждом радиусе делается отметка в определенном месте согласно масштабу исходя из данных за соответствующий месяц. Если данные превышают среднегодовой уровень, отметка делается за пределами окружности на продолжении радиуса. Затем отметки различных месяцев соединяются отрезками.