Основы программирования в Linux - Нейл Мэтью
Шрифт:
Интервал:
Закладка:
1. Первая программа — поставщик. Она создает канал, если требуется, и затем записывает в него данные как можно быстрее.
ПримечаниеПоскольку пример иллюстративный, нас не интересуют конкретные данные, и мы не беспокоимся об инициализации буфера, В обоих листингах затененные строки содержат изменения, внесенные в программу fifo2.c помимо удаления кода со всеми аргументами командной строки.
#include <unistd.h>
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <fcntl.h>
#include <limits.h>
#include <sys/types.h>
#include <sys/stat.h>
#define FIFO_NAME "/tmp/my_fifo"
#define BUFFER_SIZE PIPE_BUF
#define TEN_MEG (1024 * 1024 * 10)
int main() {
int pipe_fd;
int res;
int open_mode = O_WRONLY;
int bytes_sent = 0;
char buffer[BUFFER_SIZE + 1];
if (access(FIFO_NAME, F_OK) == -1) {
res = mkfifo(FIFO_NAME, 0777);
if (res != 0) {
fprintf(stderr, "Could not create fifo %sn", FIFO_NAME);
exit(EXIT_FAILURE);
}
}
printf("Process %d opening FIFO O_WRONLYn", getpid());
pipe_fd = open(FIFO_NAME, open_name);
printf("Process %d result %dn", getpid(), pipe_fd);
if (pipe_fd != -1) {
while (bytes_sent < TEN_MEG) {
res = write(pipe_fd, buffer, BUFFER_SIZE);
if (res == -1) {
fprintf(stderr, "Write error on pipen);
exit(EXIT_FAILURE);
}
bytes_sent += res;
}
(void)close(pipe_fd);
} else {
exit(EXIT_FAILURE);
}
printf("Process %d finishedn", getpid());
exit(EXIT_SUCCESS);
}
2. Вторая программа, потребитель, гораздо проще. Она читает и выбрасывает данные из канала FIFO.
#include <unistd.h>
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <fcntl.h>
#include <limits.h>
#include <sys/types.h>
#include <sys/stat.h>
#define FIFO_NAME "/tmp/my_fifo"
#define BUFFER_SIZE PIPE_BUF
int main() {
int pipe_fd;
int res;
int open_mode = O_RDONLY;
char buffer[BUFFER_SIZE - 1];
int bytes_read = 0;
memset(buffer, ' ', sizeof(buffer));
printf("Process %d opening FIFO O_RDONLYn", getpid());
pipe_fd = open(FIFO_NAME, open_mode);
printf("Prосеss %d result %dn", getpid(), pipe_fd);
if (pipe_fd != -1) {
do {
res = read(pipe_fd, buffer,BUFFER_SIZE);
bytes_read += res;
} while (res > 0);
(void)close(pipe_fd);
} else {
exit(EXIT_FAILURE);
}
printf("Process %d finished, %d bytes readn", getpid(), bytes_read);
exit(EXIT_SUCCESS);
}
Когда вы выполните эти программы одновременно, с использованием команды time для хронометража читающего процесса, то получите следующий (с некоторыми пропусками для краткости) вывод:
$ ./fifo3 &
[1] 375
Process 375 opening FIFO O_WRONLY
$ time ./fifo4
Process 377 opening FIFO O_RDONLY
Process 375 result 3
Process 377 result 3
Process 375 finished
Process 377 finished, 10485760 bytes read
real 0m0.053s
user 0m0.020s
sys 0m0.040s
[1]+ Done ./fifo3
Как это работает
Обе программы применяют FIFO в режиме блокировки. Вы запускаете первой программу fifo3 (пишущий процесс/поставщик), которая блокируется, ожидая, когда читающий процесс откроет канал FIFO. Когда программа fifo4 (потребитель) запускается, пишущий процесс разблокируется и начинает записывать данные в канал. В это же время читающий процесс начинает считывать данные из канала.
ПримечаниеОС Linux так организует планирование двух процессов, что они оба выполняются, когда могут, и заблокированы в противном случае. Следовательно, пишущий процесс блокируется, когда канал полон, а читающий — когда канал пуст.
Вывод команды time показывает, что читающему процессу потребовалось гораздо меньше одной десятой секунды для считывания 10 Мбайт данных в процесс. Это свидетельствует о том, что каналы, по крайней мере, их реализация в современных версиях Linux, могут быть эффективным средством обмена данными между программами.
Более сложная тема: применение каналов FIFO в клиент-серверных приложениях
Заканчивая обсуждение каналов FIFO, давайте рассмотрим возможность построения очень простого клиент-серверного приложения, применяющего именованные каналы. Вы хотите, чтобы один серверный процесс принимал запросы, обрабатывал их и возвращал результирующие данные запрашивающей стороне — клиенту.
Вам нужно разрешить множественным клиентским процессам отправлять данные серверу. Для простоты предположим, что данные, которые нужно обработать, можно разбить на блоки, каждый из которых меньше PIPE_BUF байтов. Конечно, реализовать такую систему можно разными способами, но мы рассмотрим только один, как иллюстрацию применения именованных каналов.
Поскольку сервер будет обрабатывать только один блок данных в каждый момент времени, кажется логичным создать один канал FIFO, который читается сервером и в который записывают всё клиенты. Если открыть FIFO в блокирующем режиме, сервер и клиенты будут при необходимости блокироваться.
Возвращать обработанные данные клиентам немного сложнее. Вам придется организовать второй канал для возвращаемых данных, один для каждого клиента. Если передавать идентификатор (PID) процесса-клиента в исходных данных, отправляемых на сервер, обе стороны смогут использовать его для генерации уникального имени канала с возвращаемыми данными.
Выполните упражнение 13.13.
Упражнение 13.13. Пример клиент-серверного приложения1. Прежде всего, вам нужен заголовочный файл client.h, в котором определены данные, общие для серверных и клиентских программ. В приложение также для удобства включены требуемые системные заголовочные файлы.
#include <unistd.h>
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <fcntl.h>
#include <limits.h>
#include <sys/types.h>
#include <sys/stat.h>
#define SERVER_FIFO_NAME "/tmp/serv_fifo"
#define CLIENT_FIFO_NAME "/tmp/cli_%d_fifo"
#define BUFFER_SIZE 20
struct data_to_pass_st {
pid_t client_pid;
char some_data[BUFFER_SIZE - 1];
};
2. Теперь займемся серверной программой server.c. В этом разделе вы создаете и затем открываете канал сервера. Он задается в режиме "только для чтения" и с блокировкой. После засыпания (из демонстрационных соображений) сервер читает данные от клиента, у которого есть структура типа data_to_pass_st.
#include "client.h"
#include <ctype.h>
int main() {
int server_fifo_fd, client fifo_fd;
struct data_to_pass_st my_data;
int read_res;
char client_fifo[256];
char *tmp_char_ptr;
mkfifo(SERVER_FIFO_NAME, 0777);
server_fifo_fd = open(SERVER_FIFO_NAME, O_RDONLY);
if (server_fifo_fd == -1) {
fprintf(stderr, "Server fifo failuren");
exit(EXIT_FAILURE);
}
sleep(10); /* для целей демонстрации разрешает клиентам создать очередь */
do {
read_res = read(server_fifo_fd, &my_data, sizeof(my_data));
if (read res > 0) {
3. На следующем этапе вы выполняете некоторую обработку данных, только что полученных от клиента: преобразуете все символы в некоторых данных в прописные и соединяете CLIENT_FIFO_NAME с полученным идентификатором client_pid.
tmp_char_ptr = my_data.some_data;
while (*tmp_char_ptr) {
*tmp_char_ptr = toupper(* tmp_char_ptr);
tmp_char_ptr++;
}
sprintf(client_fifo, CLIENT_FIFO_NAME, my_data.client_pid);
4. Далее отправьте обработанные данные назад, открыв канал клиентской программы в режиме "только для записи" и с блокировкой. В заключение закройте серверный FIFO с помощью закрытия файла и отсоединения FIFO.
client_fifo_fd = open(client_fifo, O_WRONLY);
if (client_fifo_fd ! = -1) {
write(client_fifo_fd, &my_data, sizeof(my_data));
close(client_fifo_fd);
}
}
} while (read_res > 0);