Очерки о Вселенной - Борис Александрович Воронцов-Вельяминов
Шрифт:
Интервал:
Закладка:
Масса нашей Галактики, оцененная несколькими способами, составляет 21011 масс Солнца. Около 1/100 этой массы составляет межзвездный водород, преимущественно нейтральный. Масса 21011 соответствует оценке числа звезд в Галактике, так что на долю несветящихся звезд, если такие вообще есть, приходится очень малая доля массы.
Оорту (Голландия) в 1927 г. удалось обнаружить обращение звезд и в том числе Солнце (вместе с его планетами) вокруг центра Галактики. Как можно обнаружить вращение нашей звездной системы, впервые указал еще в середине прошлого века казанский астроном М. А. Ковальский, но его открытие было забыто. Галактика вращается не как колесо, но и не так, как планеты обращаются вокруг Солнца. Закон ее вращения сложен и является сочетанием законов, представляющих указанные два типа вращения. Солнечная система обращается вокруг центра Галактики, лежащего от нас на расстоянии 25 000 световых лет со скоростью около 220 км/сек. Форма орбиты как следует еще не известна, но если она близка к окружности, что вероятно, то один оборот по ней Солнце завершает примерно за 270 млн. лет. Этот период, если хотите, можно принять за «космический год» для измерения очень больших промежутков времени. Вер история человечества в сравнении с таким периодом — только краткий миг! Если бы мы могли видеть, как Солнце несется и заворачивает по своей орбите, как мы видим поезд, заворачивающий на закруглении пути, то мы не могли бы уследить за оборотами планет около Солнца. Они казались бы вертящимися быстрее, чем лопасти электрического вентилятора.
Звезды обращаются вокруг центра Галактики с разными скоростями и, например, короткопериодические цефеиды отстают от Солнца на 100 км за каждую секунду! Движение нашей Солнечной системы со скоростью 20 км в секунду в направлении к созвездию Лиры — это ее движение внутри нашего звездного облака или Местной системы. Оно мало и не мешает нам вместе со всей Местной системой обращаться вокруг галактического центра.
Расположение невидимого нейтрального газа можно установить во всем объеме Галактики. При этом очень важно следующее. В галактической плоскости оптические исследования ограничиваются поглощением света в космической пыли. Это поглощение для радиоизлучения практически отсутствует, в радиолучах Галактика прозрачна. С другой стороны, доплеровские смещения водородных линий с λ=21 см от облаков, лежащих на разных расстояниях от нас и движущихся с разной скоростью, позволяют эти линии изучать раздельно. В результате нейтральный водород, не в пример туманностям и звездам, можно изучать до самых удаленных областей Галактики.
Исследования распределения газа в Галактике показали, что в длинных уплотненных волокнах шириной около 200 парсек средняя концентрация водорода — 1 атом в 1 см3, а между ними она раз в 10 меньше.
В центральной области Галактики масса газа составляет ничтожную долю от массы звезд, но на периферии его масса равна примерно 15 %, так как там звездная плотность падает. В целом масса газа составляет около 1–2 % от массы Галактики, остальное приходится на звезды. Более 90 % межзвездного водорода находится в нейтральном состоянии. Ионизован он лишь там, где много горячих гигантов, что бывает в основном в средних частях спиральных галактик. В нашей Галактике доля ионизованного водорода достигает 40 % на расстояниях между 3000 и 3500 парсек от центра.
Следовало ожидать, что в связи с этим светлые газовые диффузные туманности расположены там, где проходят волокна уплотненного нейтрального водорода. Ожидалось также, по аналогии с другими спиральными галактиками, что и светлые туманности, и нейтральный водород, и горячие звезды, в частности, скопления их, должны обрисовывать спиральные ветви нашей Галактики.
Такие сопоставления малоубедительны ввиду значительного произвола в объединении объектов в спиральные ветви. Основное расхождение состоит, объективно говоря, в том, что найденные волокна нейтрального водорода образуют скорее окружности, чем спирали. Мы полагаем, что расстояния до оптических объектов этого типа установлены еще ненадежно, как и расстояния до облаков нейтрального водорода, выведенные по экстраполяции закона вращения Галактики.
Рис. 176. Нейтральный водород в Галактике
Спиральные галактики бывают и с широко открытыми двумя-четырьмя спиральными ветвями и со многими ветвями или с почти концентрическими дугами. Возможно, что наша Галактика принадлежит к последнему виду: ее спиральные рукава или сильно ветвятся или состоят из бесчисленных коротких дуг. Тогда понятно, что обрывки этих образований трудно уложить в правильные схематические кривые, каких у реальных галактик почти не бывает.
Голландские астрономы установили существование в центре Галактики диска толщиной около 130 и радиусом около 400 парсек. Он вращается со скоростью около 200 км/сек на периферии. На расстоянии 300 парсек от центра они же нашли кольцо, или часть спирали, удаляющуюся от центра со скоростью около 50 км/сек. Кроме того, найдено, что слой межзвездного газа имеет перекос относительно плоскости Галактики, будучи приподнят в направлении к Магеллановым Облакам и опущен в противоположном направлении. Вероятно, это объясняется эффектом влияния этих небольших неправильных галактик (наших спутников) на газовый слой нашей Галактики. Подобные явления перекоса мы обнаружили еще раньше в некоторых парах других галактик.
Радионаблюдения позволили установить и температуру межзвездного газа по интенсивности линии 21 см в слоях, где он достаточно непрозрачен и излучает как черное тело. Была найдена температура излучения в 125°К вместо 10–15° К, как считали раньше. Предполагают, что столкновения облаков ведут к их нагреву до 3000°, после чего происходит охлаждение до 25° К, так что температура разных облаков весьма различна.
В итоге всех исследований можно сказать, что в нашей Галактике космической пыли раз в 10 меньше, чем диффузного газа.
Галактики — острова Вселенной
Вскоре после изобретения телескопа внимание наблюдателей привлекли многочисленные светлые пятна туманного вида, так и названные туманностями, видимые неизменно в одних и те же местах в разных созвездиях. Их заносили в каталоги, но главным образом с чувством досады на то, что они мешают открывать кометы, имеющие вид таких же туманностей, но отличающиеся своим перемещением на фоне звездного неба, подобно планетам.
Первый такой каталог составил в XVIII веке француз Мессье. По этому каталогу, включающему около сотни объектов, туманности и звездные скопления обозначаются номерами после буквы М. Например, шаровое скопление в Геркулесе М 13, большая туманность в Андромеде М 31, в Треугольнике М 33. О другом подобном каталоге (NGC) мы говорили ранее (стр. 567). С помощью светосильных телескопов Вильям Гершель и его сын Джон, а затем Росс (тоже в Англии) открыли множество таких туманных пятен, а к концу прошлого века у некоторых из них Россом была обнаружена спиральная форма. В таких спиральных туманностях из туманного ядра, более яркого к центру, выходят ветви или рукава, закручивающиеся вокруг ядра по спирали подобно часовой