Психология критического мышления - Дайана Халперн
Шрифт:
Интервал:
Закладка:
Случалось ли, что решение задачи приходило к вам внезапно? Это явление обычно называют инсайтом (озарением) или «Ага!»-эффектом. Такие решения могут прийти на ум как в период инкубации, так и в период активной работы над задачей. Если воспользоваться метафорой, то ситуацию можно сравнить с внезапным включением лампочки в голове. Интересен тот факт, что ранние исследования подобных проблесков в сознании проводились не с людьми, а с шимпанзе (Kohler, 1925). Оказывается, когда шимпанзе не может решить, как достать лакомый кусочек, который легко можно добыть, составив вместе две доски и образовав тем самым нечто вроде горки, период наблюдаемого у него беспорядочного поведения сменяется вышеупомянутым внезапным проблеском в сознании.
Инсайт встречается довольно часто. Время от времени я сталкиваюсь с этим при общении со студентами, которым преподаю статистику. Нередко случается так, что при обдумывании какой-либо задачи лицо студента расплывается в улыбке и он восклицает: «Ага, теперь я понял!» Одна студентка юридического факультета как-то сказала мне, что три четверти первого курса обучения она провела в каком-то интеллектуальном тумане. Она чувствовала, что почти ничего не понимает в основных положениях предмета. Потом что-то «щелкнуло», и девушка внезапно во всем разобралась — поняла, на чем строятся юридические принципы. Как будто вспышка света в сознании высветила основные идеи. Этот инсайт позволил ей весьма преуспеть в карьере юриста.
Следует отметить, что инсайт обычно следует после периода концентрации усилий — который, в свою очередь, приходит тогда, когда человек, решающий задачу, уже ознакомился с ней и имеет в своем распоряжении возможные решения. Представленный ниже обзор стратегий решения задач содержит некоторые указания, которые позволяют направить мыслительный процесс по пути, на котором увеличивается вероятность инсайта.
НастойчивостьЯ склоняюсь к убеждению, что все проблемы человеческих взаимоотношений когда-нибудь могут быть решены.
Ральф Банч (цит. по: Beilensen Jackson, 1992, p. 31)
Хотя обычно настойчивость не выделяется отдельно при решении задач, на деле она является важнейшим фактором, определяющим успех. Человек, который проявляет упорство при решении задачи, с большей вероятностью достигнет решения, чем тот, кто сразу же сдается. Настойчивость близка идее Левина (Levine, 1994) о «принятии личных обязательств». Принятие личных обязательств — это готовность, работая над задачей, идти сложным путем при максимальной сосредоточенности. Например, вы взялись за решение математической задачи. Очевидно, что если вы, немного помучившись, но так и не найдя нужного решения, отложите ее в сторону, вы вряд ли достигнете таких успехов в области математики, каких достигнет человек, с упорством продолжающий поиски решения.
Подумайте о структуре задачи, о которой только что говорилось. Предположим, что вы не можете найти путь от исходного положения до цели. Сдавшись, вы обрекаете себя на поражение. Исследования показали, что слишком раннее прекращение поиска решения в пространстве задачи является главной причиной неудач.
Хиллер со своими коллегами (Heller et al., 1992) провел сравнительный анализ методов, которые применяют опытные врачи при постановке точного диагноза, с методами, применяемыми врачами-новичками. Если вы записываетесь на прием к ВраЧу _ значит, у вас возникла какая-то задача. Вам нужно установить причину появления симптомов, чтобы устранить и симптомы, и вызвавшую их причину. Молодые врачи, как правило, сразу же прекращают поиски причины, как только находят какое-либо правдоподобное объяснение. Напротив, опытные врачи продолжают свои поиски в пространстве задачи, даже когда отыскивают возможную причину. Очень похожая картина наблюдалась, когда сравнивали поведение студентов-генетиков, добившихся определенных успехов в решении задач, с поведением их менее успевающих сокурсников. Наиболее бросившееся в глаза различие между ними состояло в числе вариантов, которые они рассматривали: успевающие студенты проявляли больше настойчивости (Smith M. U., 1988). Это важный момент: чтобы добиться успехов в решении задачи, вы должны быть готовы работать над ней с большим усердием, не прекращая поисков решения в пространстве задачи даже в тех случаях, когда решение не является очевидным или одно из возможных решений уже найдено.
Четко и нечетко поставленные задачи
Ну вот, перед вами Винни-Пух. Как видите, он спускается по лестнице вслед за своим другом Кристофером Робином, головой вниз, пересчитывая ступеньки собственным затылком: бум-бум-бум. Другого способа сходить с лестницы он пока не знает. Иногда ему, правда, кажется, что можно бы найти какой-то другой способ, если бы он только мог на минутку перестать бумкать и как следует сосредоточиться (А. А. Милн. Винни-Пух и все-все-все… Пер. Б. Заходера).
Задачи бывают различных типов и уровней сложности. Рассмотрим следующие две задачи.
1. Задача определения площади параллелограмма (Wertheimer, 1959). Когда-то, в пятом или шестом классе, вы учили, что площадь прямоугольника определяется умножением его длины на высоту. Пусть теперь вам дан параллелограмм длиной 4 см и высотой 2 см. Какова его площадь?
2. Сочините поэму, описывающую чувства, которые вы испытываете при появлении первых распустившихся весенних цветов.
Эти задачи кажутся вам качественно совершенно разными, не правда ли? Задача параллелограмма имеет единственное точное решение. Вы его нашли? Вертхаймер (Wertheimer, 1959) указал, что правильное решение заключается в реорганизации восприятия, или представлении задачи в новой форме. В данном случае следует мысленно представить параллелограмм в виде прямоугольника и двух треугольников. Параллелограмм приобретает следующий вид:
После того как задача преобразована таким образом, остается сделать небольшое усилие и сообразить, что площадь параллелограмма может быть определена по той же формуле, что и площадь прямоугольника, поскольку, сдвинув один из треугольников к другому, мы получим прямоугольник длиной 4 см и высотой 2 см. В приведенном примере площадь параллелограмма равна 2 см х 4 см = 8 см2. Другого правильного ответа просто не существует. Цель (правильный ответ) в данном случае является четко поставленной, так же как и путь достижения этой цели.
Написание поэмы — это задача совсем иного рода. Цель (создание поэмы, выражающей восхищение) поставлена нечетко, здесь могут быть выбраны различные пути ее достижения. Существует бесчисленное множество способов написания поэмы. Самая большая сложность в данном случае состоит в оценке качества конечного продукта. Цель в нечетко обозначенной задаче сама является неопределенной, поэтому некоторая сложность заключается также в том, чтобы вообще понять, решена или нет задача (Dorner, 1983).
Большинство задач, с которыми люди сталкиваются за пределами школы, поставлены нечетко. Человек, занятый решением задачи, должен сам обозначить цель и затем оценить, насколько полно она достигнута. И наоборот, большинство задач, которые ставятся перед студентами в учебном заведении, четко поставлены; это означает, что они имеют единственный правильный ответ. Другими примерами нечетко поставленных задач служат: внедрение способа увеличения количества торговых сделок в бизнесе, открытие новых, более эффективных форм обучения, создание написанного доступным языком учебника, накопление денег для платы за обучение, усовершенствование мышеловки, ограничение производства ядерного оружия, назначение свидания привлекательной однокласснице, оздоровление окружающей среды и т. д. В нечетко поставленных задачах цель может быть расплывчатой или не подразумевающей завершенности, что создает сложности при выработке путей решения задачи и еще больше усложняет их оценку.
Одним из наилучших путей решить нечетко поставленную задачу является постановка четкой цели. Обычно в таких случаях цель можно установить несколькими способами. Например, задача повышения числа торговых сделок может быть переопределена в задачу повышения прибыли, поскольку реальная цель заключается именно в нахождении путей получения большей суммы денег. Представленная в такой форме задача меняет свою первоначальную формулировку. Пути решения теперь могут включать в себя сведение к минимуму убытков, уменьшение товарно-материальных запасов, получение невыплаченных долгов. Наилучший способ решения нечетко поставленных задач — это обозначить несколько целей, которые в результате приведут к желаемому результату. Когда бы вы ни сталкивались с такой задачей, старайтесь наметить себе по меньшей мере четыре пути достижения цели. Такой подход предоставит вам дополнительные варианты и сможет облегчить поиски наилучшего способа решения. Иногда трудно определить, четко или нечетко поставлена задача. Вспомним задачу с поездкой в аэропорт. Если считать, что она заключается в выборе одной из трех дорог, ведущих в аэропорт, то она четко поставлена, но если возможны другие пути решения и цели — например, полет в аэропорт, использование другого самолета из ближайшего аэропорта, пользование подземкой, — то формулировка задачи становится более расплывчатой. Даже если задача на первый взгляд кажется четко поставленной, полезно рассмотреть, нельзя ли прийти к ее решению, установив иные цели — а если так, то какие пути решения задачи возможны для достижения этих целей.