Категории
Самые читаемые
RUSBOOK.SU » Документальные книги » Биографии и Мемуары » Ксандопуло Георгий. Өнегелі өмір. В. 37 - Коллектив авторов

Ксандопуло Георгий. Өнегелі өмір. В. 37 - Коллектив авторов

Читать онлайн Ксандопуло Георгий. Өнегелі өмір. В. 37 - Коллектив авторов

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 6 7 8 9 10 11 12 13 14 15
Перейти на страницу:

Установлено, что по мере роста стадийности S, на кривых скорости тепловыделения в зоне А пламен пропана (а =1,4), пен- тана (а =1,7) и гексана (а =2,7) имеется максимум, предшествующий основному тепловыделению и соответствующий особенности распределения диффузионного профиля н-атомов.

С ростом исходной температуры горючей смеси Т0 или с добавлением ингибиторов, первый максимум подавляется, а основной сдвигается, уширяя зону т, что также согласуется с постулатом.

На основе представленных экспериментальных доказательств, а также обнаружения между А и Т зоны ОТК для пламен в диапазоне значений С0 = а = 1,4÷2,7, построена макрокинетическая модель эволюции точки бифуркации. На ее основе впервые получена формула для вычисления ширины L разрыва в бифронте или, что тоже, в стадийных пламенах. Величина L зависит от степени стадийности S, представляющей собой отношение скоростей потребления кислорода, топлива или образования воды в зонах А(АК) и Т(ТКi). Ширина разрыва зависит от критерия бифуркации е = АК – тКi, (где і – топливо, кислород и вода), отношения скорости горения и концентрации к относительному уширению трубки тока. найденная по формуле величина L = 2,3 мм оказалась в удовлетворительном согласии с величиной 0,8 мм расстояния между максимумами в пламени гексана а = 2,7. Величина L может быть использована для вычисления собственных частот бифронта.

Введение

Первая часть настоящей работы посвящена изучению условий формирования структуры фронта пламени как функции состава С0, Т0 и Р горючих смесей со свойством стадийного самовоспламенения. В этой связи рассмотрены общие макро-кинетические черты и различие явлений стадийного самовоспламенения и процесса распространения фронта пламени. в качестве условий стабилизации двустадийного пламени избрана основополагающая роль фактора противо-диффузии активных центров в свежую горючую смесь из горячей зоны их генерации в пределах холодной зоны фронта пламени. Показана связь диффузии с формированием двух кинетических зон механизма конверсии топлива в пределах фронта пламени. Bыделены два типа механизма конверсии, каждый из которых дислоцируется в соответствующей температурной зоне, занимая преобладающее положение в скорости конверсии топлива. Это зона А автокаталитического блока реакций механизма низкотемпературной конверсии топлива и зона Т блока реакций механизма теплового автоускорения высокотемпературной конверсии топлива. Переходная зона смены механизмов характеризуется неизвестной ранее в пределах узкой зоны фронта зоной отрицательной Аррениусовской зависимости коэффициента скорости суммарной реакции от температуры ОТК (как при стадийном самовоспламенении в пределах индукции горячей вспышки).

Установлено, что отношение скорости потребления кислорода АКО2, топлива АКf и накопления в реакционной смеси воды АКН2О, взятое в зоне А при 520 К к зоне Т при 1000 К (тКО2, тКf тКН2О) представляет характерную величину фактора или степени стадийности S горючей смеси. Близость по этой величине смесей разных по природе топлив характеризует их идентичность.

В представленном материале исследований структуры фронта пламен C1 – С6 – углеводородов последовательно приведены примеры доказывающие правомерность позонного деления фронта. Например, аналогичные вычисления значений S по продуктам характерным лишь для T-зоны (CО2, ацетилен, пропилен, этилен, водород, метан) дают несогласующиеся величины.

Показано, что при S > 1 и АКО2 – тКО2 = εО2, а так же при εf и εН2О > 0 фронт пламени претерпевает бифуркацию и представляет собой бифронт. Область отрицательных значений 8; представляет монофронт. По сути эволюция структуры фронта проходит через отрицательные значения этой величины.

В настоящей работе систематизирован и подвергнут анализу материал литературы по фактору диффузии, форме распределения атомов водорода и объемной скорости тепловыделения в пределах фронта С – С6 – углеводородов, с точки зрения зависимости степени стадийности от значения С0. Далее в настоящей работе предложен анализ механизма бифуркации, с целью создания кинетической модели бифронта и разработки возможности вычисления величины разрыва, как возможной функции степени стадийности S горючей смеси.

Эволюция А – Т механизма

Представленная в сообщении 1 функция А – т механизма в виде ОтК свидетельствует об особой роли формы распределения Н-атомов во фронте. На (рис. 1-3) представлена зависимость формы распределения Н-атомов на примере метана, пропана и пентана.

При небольшом возрастании С0 форма распределения Н-атомов в зоне А заметно изменяется, перегиб в диапазоне Т2 = 500-650 К. Видно, что кривые распределения концентрации Н-атомов близки между собой и практически не зависят от природы топлива [1-5]. Формирование в низкотемпературной зоне источника этих частиц протекает начиная с точки перегиба на представленных кривых, и после пологого участка следует экспоненциальный спад. Позднее аналогичная закономерность была установлена в [6-7] при возрастании добавок пероксида к смеси эфира с воздухом на примере формы кривых распределения атомов водорода, гидроксила, атомов кислорода и радикалов НО2.

Таким образом, можно заключить, что приведенный материал свидетельствует о том, в холодной зоне фронта устанавливается низкотемпературный источник активных частиц, воспроизводящих атомы водорода и др. радикалы.

Рис. 1. Распределение концентрации Н-атомов во фронте пламени метана при разных С0, Т = 298К и Р = 0,1МПа.

Рис. 2. Распределение температуры и концентрации Н-атомов в преде- лах фронта пламени пропана (2 < 0) С0 = а = 1,4 и в пределах равновесной зоны (2 > 0), Т0 = 294К.

Рис. 3. Распределение концентрации Н-атомов во фронте пламени Н-пентана С0 = а = 1,4 Т0 = 294К.

Соответственно диффузионному распределению радикалов можно ожидать форму профиля тепловыделения. На рис. 4-6 представлены кривые скорости объемного тепловыделения в пламёнах метана (а = 0,8; 1,07; 1,3), пропана (а = 1,4) [1, 2], Н-пентана, (а = 1,4; 1,5; 1,7) при Т0 = 293 К и в пламени гексана а = 2,7 в диапазоне Т0 = 344 К и 480 К [8-10].

Рис. 4. Распределение скорости объемного тепло- выделения в пламенах ме- тана при Т0 = 294К, 1) а = 0,8; 2) а = 0,03; 3) а = 1,3. Из сопоставления кривых в ходе наращивания С0 следует, что при превышении значения а >1 область тепловыделения смещается в сторону низких температур (зоны А). Начиная от а = 1,3 до 2,7 виден участок низкотемпературного тепловыде- ления на кривых для пропана [1, 2], пентана и гексана. Главный максимум тепловыделения в пламени гексана Т0 = 340 К (рис. 6) следует за холодным с разрывом ΔZ = 0,8 мм и следовательно совместно они подавляют бифронт. При Т0 = 404К и 480К имеется главный максимум тепловыделения, который смещен за точку Z > 0. Пламя при Т0 = 380К можно рассматривать как две последовательные бифуркации с образованием трех монофронтов, из которых главный находится при Z > 0. Малые максимумы кривых для пропана [1, 2] и пентана (рис. 5) сходны с первым на рис. 6.

Рис. 5. Распределение скорости объемного тепловыделения в пламенах Н-пентана, Т0 = 294 К.

Рис. 6. Распределение температуры и скорости объемного тепловыделения в пламени гексана а = 2,7 при различных Т0 = 340К, 404К и 480К.

В целом, применяя принятое в предыдущем сообщении (ПС) условие аКО2 = АКГ = аКН2О можно установить наиболее достоверные значения фактора 8 из величин АК; пламён горючих смесей представленных в табл. 2 (ПС). Видно, что принятое соотношение удовлетворяется при Те = 294 К для Н-пентана и изопентана в следующем составе: S = Sо2 = Sн2о = Sf ≤ 1 при а = 1,7. При Т0 > 294 К и а = 1,7, когда активно возрастает TКо2, принятое условие изменяется: S = Sн2о = S f < 1 для Н-пентана.

На примере пропана это условие выполняется при 294 К:

S = Sо2 = S f < 1,0 (а = 1,4)

В пламени метана S = Sо2 = Sн2о = Sсо ≈ S f < < 1,0 при а = 1,3.

При а = 0,8 и а = 1,07 значения 8 по компонентам не удовлетворительно согласуются между собой, что обусловлено малой долей А-механизма в конвертированной топливной смеси.

При очень больших С0, как в пламени гексана, изменение Sо2, как функции Т0 – имеет обратную направленность по сравнению с тем, что установлена для пламени с а =1,7. Это обусловлено образованием не двух, а трех зон, между которыми выбор Т = 0 необходимо оптимизировать. Что касается величины S f, то она изменяется с ростом Т0 так же как в пламени Н-пентана. Бифронт характеризуется большим значением фактора стадийности S > 1.

1 ... 6 7 8 9 10 11 12 13 14 15
Перейти на страницу:
На этой странице вы можете бесплатно скачать Ксандопуло Георгий. Өнегелі өмір. В. 37 - Коллектив авторов торрент бесплатно.
Комментарии
Открыть боковую панель
Комментарии
Сергій
Сергій 25.01.2024 - 17:17
"Убийство миссис Спэнлоу" от Агаты Кристи – это великолепный детектив, который завораживает с первой страницы и держит в напряжении до последнего момента. Кристи, как всегда, мастерски строит