Аналитика: методология, технология и организация информационно-аналитической работы - Юрий Курносов
Шрифт:
Интервал:
Закладка:
Специалисты в области теории систем ИИ сходятся в мнении, что активность и относительная автономность отдельных подсистем системы искусственного интеллекта способна существенно повысить их эффективность и надежность выводов. Активно развивается направление автономных интеллектуальных агентов — автономных подсистем, наделенных автоматными реакциями на некий комплекс однотипных раздражителей. Поведение таких подсистем по отдельности невозможно назвать интеллектуальным, однако, будучи объединены в комплекс, они оказываются в состоянии обеспечить систему более высокого уровня информацией, необходимой для выработки решения о ситуации и степени ее «полезности» для системы в целом. Такая система обычно строится по иерархическому принципу и располагает сведениями о ценности тех или иных ресурсов, важности удержания значений критических параметров в заданных диапазонах и т. д. — то есть, теми сведениями относительно которых принимается решение о семантике нового признака.
В рамках теории ИИ можно выделить два мощных направления: логическое направление и направление нейронных и нейроподобных сетей.
Логическое направление теории систем искусственного интеллекта основной упор делает на симбиоз логического аппарата и аппарата теории вероятностей. Основное отличие логических систем ИИ от логических экспертных систем состоит в том, что на основе анализа показателей, используемых для вычисления функции полезности (именно с таких позиций осуществляется интерпретация тех или иных состояний и процессов), система способна самостоятельно корректировать аксиоматику: осуществлять ранжирование аксиом, удалять или вводить новые аксиомы. В принципе такая система в состоянии как развиваться, так и деградировать, однако то, какие именно тенденции будут развиты системой, во многом определяется тем, как на этапе синтеза системы была определена функция полезности.
Серьезнейшим недостатком логических систем ИИ является то, что алгоритмы логических рассуждений трудно поддаются распараллеливанию, если на каком-то этапе и удается выделить несколько относительно независимых логических операций и производить их исчисление разными решателями, то в некоторой точке алгоритм, как правило, сходится. А это значит, что наиболее «долгая» ветвь алгоритма будет определять быстродействие системы в целом. С целью сокращении вычислительных затрат изыскиваются методы логического вывода, задачей которых является установление факта нецелесообразности производства дальнейших вычислений. Однако, несмотря на эти ухищрения, объемы вычислений и быстродействие решателя остаются узким местом логических систем ИИ.
Направление систем искусственного интеллекта на базе нейронных и нейроподобных сетей «ближе к природе»: если логика — это порождение человеческого интеллекта, формальная система, выведенная на основе научного обобщения закономерностей человеческого мышления, то нейронные и нейроподобные сети — это попытка сымитировать не процесс мышления, а «процесс чувствования». В основе построения таких систем лежит принцип действия нейрона и нейронной сети, имитирующей строение центральной нервной системы человека.
Для начала разберемся с тем, что представляет собой нейрон… Нейрон — это нервная клетка, состоящая «… из довольно крупного (до 0,1 мм) тела, от которого отходят несколько отростков — дендритов, дающих начало все более и более тонким отросткам, подобно ветвям дерева. Кроме дендритов, от тела нервной клетки отходит еще один отросток — аксон, напоминающий длинный тонкий провод. Аксоны бывают очень длинны — до метра — и заканчиваются, подобно дендритам, древовидным разветвлением. На концах веточек, отходящих от аксона, можно видеть маленькие пластинки или луковички. Луковички одного нейрона близко подходят к различным участкам тела или дендритов другого нейрона, почти прикасаясь к ним. Эти контакты носят название синапсов; через них нейроны взаимодействуют друг с другом. Число луковичек, подходящих к дендритам одного нейрона, может исчисляться десятками и даже сотнями. Таким образом, нейроны очень тесно связаны друг с другом; они образуют нервную сеть[66]». Если не вникать в тонкости, то можно сказать, что нейроны могут пребывать только в двух состояниях: возбужденном состоянии или в покое. При возбуждении на поверхности клетки образуется электрический потенциал, который передается через синапсы других нервных клеток и либо переводит, либо не переводит их в состояние возбуждения. Поэтому исходят из допущения, что нервная сеть — это дискретная система, состоящая из элементарных подсистем — нейронов, способных пребывать в одном из двух состояний. Такой взгляд на нейронную сеть, как иерархически организованную совокупность однотипных элементов со сложным поведением позволяет говорить о том, что это инструмент параллельной обработки данных, в различных сочетаниях поступающих от различных источников. Нейроны обладают способностью к обучению, заключающейся в том, что «проводимость синапса увеличивается после первого прохождения через него возбуждения и нескольких следующих прохождений». В результате этого повторяющиеся комбинации «данных» обучают сеть — настраивая ее на восприятие и распознавание образов ситуации (сэмплов). Как следствие, нейронная сеть, получающая данные об обстановке, поступающие от органов чувств, а также данные о внутреннем состоянии и взаимном расположении частей организма, оказывается в состоянии распознавать множество самых разнообразных состояний. Теперь задача состоит в том, чтобы получить данные, подтверждающие полезность запоминания распознанного сэмпла, что требует от системы определенных логических способностей…
Может показаться, что нейронная сеть без принципиально иной по организации системы обработки логической компоненты, отражающей топологию отношений во времени, пространстве, организационной иерархии или пространстве некой конструкции, пригодна лишь для решения задач распознавания. Но, судя по результатам исследований в области нейрофизиологии, в организме человека отсутствуют специализированные «логические клетки» — то есть, все эти операции реализуются именно на нейронных структурах, которые обладают большой информационной емкостью. Приняв некоторые упрощения, можно утверждать, что многообразие пространственных отношений выражено в терминах временных задержек реакции отдельных нейронов, инерционности отдельных связей нейронной сети. Эти характеристики также являются предметом «запоминания» и учитываются при выработке адаптивного поведения организма. Однако эта способность требует от человека способности абстрактного («знакового») мышления — введения еще одного уровня иерархии, обеспечивающей возможность оперировать информационно-емкими понятиями. Именно эта особенность — наличие второй сигнальной системы — и выделяет человека из числа прочих живых существ и обеспечивает ему возможность запоминания протяженных во времени событий и сценариев, ассоциированных с ними. То есть, логика становится доступной нашему пониманию, если введена знаковая система, запоминание правил которой дается легче, нежели запоминание всех конкретных признаков событий и вероятных путей их развития. Рассуждая логически, мы оперируем не образами ситуаций, а знаками, для запоминания которых требуются гораздо меньшие усилия.
Преимуществом нейронной или нейроподобной сети перед чисто логической системой искусственного интеллекта заключается в гибком сочетании параллельной и последовательной обработки информации, обусловленном иерархической структурой нейронной сети. Однако человеку свойственно оптимизировать свою деятельность — там, где удобнее воспользоваться неким инструментом, имеющимся в его распоряжении, он не станет искать пути применения того инструмента, который не приспособлен для выполнения работы. Пока нейроподобные сети (созданные на искусственных нейронах — перцептронах) и нейронные сети (созданные на нейронах, полученных у простейших организмов), как правило, на этапе манипулирования логической компонентой используют традиционную или несколько модифицированную логику, то есть, переходят от параллельной обработки данных к последовательной обработке. Хотя созданы и средства, которые, оперируя величинами инерционности нейронов, способны осуществлять логическую обработку без перехода к уровню знаковой системы. Сражение за быстродействие систем продолжается и, возможно, что через некоторое время мы станем свидетелями технологического прорыва в этом направлении, который приведет к созданию реальной системы параллельной обработки данных. Однако это не приведет к тому, что формальная логика утратит свои позиции в инструментарии аналитика — для решения каждой специфической задачи требуется свой, индивидуальный, набор инструментальных средств.