Категории
Самые читаемые
RUSBOOK.SU » Справочная литература » Энциклопедии » Большая Советская Энциклопедия (ФО) - БСЭ БСЭ

Большая Советская Энциклопедия (ФО) - БСЭ БСЭ

Читать онлайн Большая Советская Энциклопедия (ФО) - БСЭ БСЭ

Шрифт:

-
+

Интервал:

-
+

Закладка:

Сделать
1 ... 96 97 98 99 100 101 102 103 104 ... 109
Перейти на страницу:

(Fe2 + )* + H2 O ® Fe3 + + OH- + Н + .

  Вторичные реакции приводят к образованию молекулы водорода. Перенос электрона, который может происходить при поглощении видимого света, характерен для многих красителей. Фотоперенос электрона с участием молекулы хлорофилла представляет собой первичный акт фотосинтеза – сложного фотобиологического процесса, происходящего в зелёном листе под действием солнечного света.

  В жидкой фазе молекулы органических соединений с кратными связями и ароматическими кольцами могут участвовать в разнообразных темновых реакциях. Кроме разрыва связей, приводящего к образованию радикалов и бирадикалов (например, карбенов ), а также гетеролитических реакций замещения, известны многочисленные фотохимические процессы изомеризации , перегруппировок, образования циклов и др. Существуют органические соединения, которые под действием УФ света изомеризуются и приобретают окраску, а при освещении видимым светом снова превращаются в исходные бесцветные соединения. Это явление, получившее название фотохромии, – частный случай обратимых фотохимических превращений.

  Задача изучения механизма фотохимических реакций весьма сложна. Поглощение кванта света и образование возбуждённой молекулы происходят за время порядка 10-15 сек. Для органических молекул с кратными связями и ароматическими кольцами, представляющих для Ф. наибольший интерес, существуют два типа возбуждённых состояний, которые различаются величиной суммарного спина молекулы. Последний может быть равен нулю (в основном состоянии) или единице. Эти состояния называются соответственно синглетными и триплетными. В синглетное возбуждённое состояние молекула переходит непосредственно при поглощении кванта света. Переход из синглетного в триплетное состояние происходит в результате фотофизического процесса. Время жизни молекулы в возбуждённом синглетном состоянии составляет ~ 10-8 сек; в триплетном состоянии – от 10-5 –10-4 сек (жидкие среды) до 20 сек (жёсткие среды, например твёрдые полимеры). Поэтому многие органические молекулы вступают в химические реакции именно в триплетном состоянии. По этой же причине концентрация молекул в этом состоянии может стать столь значительной, что молекулы начинают поглощать свет, переходя в высоковозбуждённое состояние, в котором они вступают в т. н. двухквантовые реакции. Возбуждённая молекула А* часто образует комплекс с невозбуждённой молекулой А или с молекулой В. Такие комплексы, существующие только в возбуждённом состоянии, называются соответственно эксимерами (AA)* или эксиплексами (AB)*. Эксиплексы часто являются предшественниками первичной химической реакции. Первичные продукты фотохимической реакции – радикалы, ионы, ион-радикалы и электроны – быстро вступают в дальнейшие темновые реакции за время, не превышающее обычно 10-3 сек.

  Один из наиболее эффективных методов исследования механизма фотохимических реакций – импульсный фотолиз , сущность которого заключается в создании высокой концентрации возбуждённых молекул путём освещения реакционной смеси кратковременной, но мощной вспышкой света. Возникающие при этом короткоживущие частицы (точнее – возбуждённые состояния и названные выше первичные продукты фотохимической реакции) обнаруживаются по поглощению ими «зондирующего» луча. Это поглощение и его изменение во времени регистрируется при помощи фотоумножителя и осциллографа. Таким методом можно определить как спектр поглощения промежуточной частицы (и тем самым идентифицировать эту частицу), так и кинетику её образования и исчезновения. При этом применяются лазерные импульсы продолжительностью 10-8 сек и даже 10-11 –10-12 сек, что позволяет исследовать самые ранние стадии фотохимического процесса.

  Область практического приложения Ф. обширна. Разрабатываются способы химического синтеза на основе фотохимических реакций (см. Фотохимический реактор , Солнечная фотосинтетическая установка ). Нашли применение, в частности для записи информации, фотохромные соединения. С применением фотохимических процессов получают рельефные изображения для микроэлектроники , печатные формы для полиграфии (см. также Фотолитография ). Практическое значение имеет фотохимическое хлорирование (главным образом насыщенных углеводородов). Важнейшая область практического применения Ф. – фотография . Помимо фотографического процесса, основанного на фотохимическом разложении галогенидов серебра (главным образом AgBr), всё большее значение приобретают различные методы несеребряной фотографии; например, фотохимическое разложение диазосоединений лежит в основе диазотипии .

  Лит.: Турро Н. Д., Молекулярная фотохимия, пер. с англ., М., 1967; Теренин А. Н., Фотоника молекул красителей и родственных органических соединений, Л., 1967; Калверт Д. Д., Питтс Д. Н., Фотохимия, пер. с англ., М., 1968; Багдасарьян Х. С., Двухквантовая фотохимия, М., 1976.

  Х. С. Багдасарьян.

Фотохромизм

Фотохроми'зм (от фото... и греч. chroma – цвет, краска), способность вещества обратимо (т. е. с последующим возвращением в исходное состояние) переходить под действием оптического излучения из одного состояния в какое-либо такое другое состояние, в котором у вещества появляется или резко меняется спектр поглощения видимого излучения. Многие вещества совершают указанные переходы под действием, например, рентгеновского или СВЧ-излучения. Тем не менее фотохромными в строгом смысле они являются, только если такие переходы они испытывают и под действием оптического излучения (ультрафиолетового, видимого или инфракрасного).

  В общем виде фотохромный процесс заключается в следующем. В исходном состоянии А вещество, поглощая оптическое излучение определенного спектрального состава, переходит в т. н. фотоиндуцированное состояние В, для которого характерны иной спектр поглощения света и некоторое (определённое для данного состояния) время жизни. Обратный переход В (А совершается самопроизвольно за счёт тепловой энергии и может чрезвычайно сильно ускоряться при нагревании вещества или под действием света, поглощаемого в состоянии В.

  Ф. присущ очень большому числу веществ органического или неорганического происхождения. В основе Ф. органических веществ лежит ряд фотофизических процессов и многочисленные фотохимические реакции (см. Фотохимия ; там же о таких типичных фотофизических процессах, приводящих к Ф., как поглощение света молекулами в триплетном состоянии, в которое они перешли из синглетного, в свою очередь, под действием излучения). Если основой Ф. служат фотохимические реакции, то они сопровождаются либо перестройкой валентных связей (например, при диссоциации , димеризации, перегруппировке атомов в молекуле, окислительно-восстановительных реакциях, а также при таутомерных превращениях, см. Таутомерия ), либо изменением конфигурации атомов в молекулах (т. н. цис-транс-изомерия, см. Изомерия ). Ф. неорганических веществ обусловлен обратимыми процессами фотопереноса электронов, приводящим к возникновению центров окраски различного типа, изменению валентности ионов металлов, а также обратимыми реакциями фотодиссоциации соединений и др.

  На основе органических и неорганических фотохромных веществ разработаны фотохромные материалы . Применение этих материалов в науке и технике основано на их светочувствительности, обратимости происходящих в них фотофизических и фотохимических процессов, на появлении или изменении окраски (спектров поглощения) непосредственно под действием света, на различии термических, химических и физических свойств исходного и фотоиндуцированного состояний фотохромных веществ.

  Лит.: Теренин А. Н., Фотоника молекул красителей и родственных органических соединений, Л., 1967; Барачевский В. А., Фотохромизм, «Журнал Всесоюзного Химического общества им. Д. И. Менделеева», 1974, т. 19, № 4, с. 423–33: Барачевский В. А., Дашков Г. И., Цехомский В. А., Фотохромизм и его применение, М., 1977; Photochromism, N. Y., [1971].

  В. А. Барачевский.

Фотохромное стекло

Фотохро'мное стекло', неорганическое стекло , способное обратимо изменять светопропускание в видимой области спектра при воздействии ультрафиолетового или коротковолнового видимого излучения. Светочувствительность Ф. с. обусловлена фотохимическими процессами, которые могут быть связаны как с переходом электронов между элементами переменной валентности (например, EuII и CeIII ) Так и с фотолизом галогенидов тяжёлых металлов (галогениды равномерно распределены в объёме стекла в виде микрокристаллических образований). Благодаря высоким фотохромным характеристикам (оптическая плотность, достигаемая при затемнении, скорости потемнения и релаксации) и технологическим свойствам наиболее распространены стекла с галогенидами серебра. Известны также Ф. с. с галогенидами меди и хлоридом таллия. Составы стекол разнообразны (силикатные, боратные, боросиликатные, германатные и фосфатные системы). Технологические режимы синтеза Ф. с. те же, что и при получении технических стекол. Возможные области применения Ф. с.: в приборостроении (в качестве светофильтров с переменным пропусканием), строительстве (для регулирования освещённости и нагрева в зданиях), голографии (в качестве регистрирующей среды для записи информации), медицине (специальные очки), самолёто- и ракетостроении (остекление кабин) и т.д.

1 ... 96 97 98 99 100 101 102 103 104 ... 109
Перейти на страницу:
На этой странице вы можете бесплатно скачать Большая Советская Энциклопедия (ФО) - БСЭ БСЭ торрент бесплатно.
Комментарии
Открыть боковую панель
Комментарии
Вася
Вася 24.11.2024 - 19:04
Прекрасное описание анального секса
Сергій
Сергій 25.01.2024 - 17:17
"Убийство миссис Спэнлоу" от Агаты Кристи – это великолепный детектив, который завораживает с первой страницы и держит в напряжении до последнего момента. Кристи, как всегда, мастерски строит